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Abstract

Since diet plays an important role in an athlete’s overall health, many stud-

ies seek to understand the relationship between an athlete’s daily intake

and performance quality. These studies are not as frequently conducted

for performance-based activities, such as dance, where most of the prior

research explores whether a difference in nutrient intake between dancers

and non-dancers exists. However, these studies fail to account for the error

in measuring long-term average intake. To account for this error, we pro-

pose using a measurement error model. As an application, we analyze the

relationship between dietary intake, body composition, and energy levels

of pre-professional contemporary dancers.
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CHAPTER 1

Introduction

To perform at their best, an athlete should understand how heavily their

dietary choices can affect their performance quality. To better understand

this relationship between daily intake and performance, numerous studies

have been conducted for athletes participating in a variety of sports (Camp-

bell et al., 2007; ACSM, 2000; Joseph and Carriquiry, 2010). However, these

studies are not as frequently conducted for performance-based activities,

such as dance (Brown et al., 2017; Frost Brown et al., 2017). Due to the pres-

sure of maintaining a particular body image, the results of studies focused

on athletes in non-performance based activities are not directly transferable

to dancers.

Dance is a relatively high-intensity activity that requires a great deal of

strength and endurance. Depending on the dancer, the style, and where

they train, a typical dance schedule can vary drastically. Often, there are

many sessions in a week with each session being multiple hours long. These

sessions can consist of technique classes, performance rehearsals, or perfor-

mances. The intensity of these sessions, particularly in the pre-professional

and professional world, are comparable to that of an elite athlete (Twitchett

et al., 2010). To be a strong performer, it is imperative that a dancer has

a nutrient-rich diet to sustain their mind and body during these long re-

hearsal sessions. Previous research in the dance world has been focused on

2



the nutrient requirements for ballet dancers, which is only one of the many

styles that dancers can learn (Brown et al., 2017). So, while these results

are important, they are not directly transferable to dancers of other styles

(including modern, contemporary, ballroom, tap, etc.). Each style of dance

has its own movement quality and these varying movement qualities often

affect the physique of the dancer. For example, dancers in the contemporary

or modern dance world are asked to complete more floorwork and be more

grounded in nature. This requires a different muscle focus than dancers in

the ballet world, who often are encouraged to dance in a lighter, more lifted

manner.

However, across all styles of dance, there often is a common aesthetic,

or expected appearance, which motivates most dancers to maintain a lean

physique. This pressure can stem from the dancer individually, from their

colleagues, from their dance instructors, or be a combination of all three.

As the commitment and experience level increases, so can the demand for a

certain appearance. Thus, dancers who have been training for many years,

like most dancers at the collegiate level, may be more driven to resort to un-

healthy eating habits. In order to maintain their desired physique, dancers

may rely on a diet plan or restrict their food consumption. If a dancer

continually follows these practices, they may be more likely to develop

an eating disorder (Yannakoulia et al., 2000). These practices could fur-

ther encourage dancers to focus on maintaining a low body fat percentage

(the percentage of body weight that is made up of fat) by avoiding certain

food groups that could actually be beneficial to their overall health. While

restrictive dietary habits may serve their purpose of maintaining a lean
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physique, they often have negative repercussions on the dancer’s overall

health and performance quality. This ideology is common not only among

dancers, but among all females athletes, and is typically known as the fe-

male athlete triad. This triad describes the relationship between reduced

nutrient intake, menstrual irregularities, and decreased bone mineral den-

sity that typically occurs in female athletes (Friesen et al., 2011).

Although it is important for dancers to intake more calories overall,

a higher nutrient intake is not sufficient enough to optimize a dancer’s

performance ability and overall health. Without the sufficient intake of

required macronutrients and micronutrients (like protein, carbohydrates,

healthy fats, calcium, iron, vitamin D, etc.), dancers can suffer from numer-

ous injuries, both internal and external. Long strenuous hours of exercise

can cause small tears in the muscle fibers and tissues. Adequate intake of

protein and other amino acids are needed to properly repair these tears in

the muscles and tissues as well as produce the enzymes necessary for me-

tabolism. Additionally, a lack of carbohydrates could affect the dancer’s

metabolism. Without proper sustenance, the dancer’s body will not be able

to delay fatigue during long rehearsals or performances due to low glycogen

levels. Further, dancers should work to maintain the recommended fat lev-

els as this is needed, among other things, as an important fuel for muscles

(Brown et al., 2017; Clarkson, 2005).

Through restrictive eating habits, dancers are in danger of deficiencies

in many micronutrients, such as calcium, iron, and vitamin D. Multiple

studies report dancers barely meeting the recommended levels for these nu-

trients (Brown et al., 2017; Clarkson, 2005; Friesen et al., 2011; Lim et al.,
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2015). Bone fractures or other musculoskeletal damage from a low bone

mineral density can occur due to an inadequate intake of calcium. Even

though weight-bearing activities, such as modern dance, can increase bone

mineral density levels, Friesen et al. (2011) did not find a discernible dif-

ference in bone mineral density levels between collegiate dancers and non-

dancers. Similarly, a lack of vitamin D can have an affect on bone health and

immune function, while a lack of iron can fail to compensate for the high

rate of hemolysis (the destruction of red blood cells). Thus, potential defi-

ciencies in calcium, iron, and vitamin D can highly affect the dancer’s ability

to perform movement, shorten the longevity of their dance career, and have

lasting impacts on their health (Lim et al., 2015; Sousa et al., 2013).

To avoid the effects that result from an inadequate amount of macronu-

trients and micronutrients, nutritionists advise that dancers eat a meal or

snack with a high enough carbohydrate level to last a whole rehearsal – an

average of 1 to 4g per kg a few hours prior to a rehearsal is suggested. In ad-

dition to food consumption, nutritionists recommend dancers also consume

5 to 7 mL per kg of water at least 4 hours prior to rehearsal. Depending

on the length of the rehearsal, adequate replenishment of food and fluids

should also be ingested during the rehearsal in order to sustain muscle and

brain function (Sousa et al., 2013; Clarkson, 2005; Rodriguez et al., 2009).

In order to rapidly replace muscle tissue after prolonged activity, proper

levels of carbohydrates, protein, electrolytes, and fluids are required after

the rehearsal session is completed. These levels will vary depending on the

length of the activity and the size of the dancer. Further, these recommen-

dations also vary between training sessions and performances. For example,
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performances are not only longer than rehearsals, but often more stren-

uous. During performances, the dancer may be more self aware of their

body image, which could further alter their food choices. Whether during a

rehearsal or a performance, a dancer must intake enough nutrients (specifi-

cally macronutrients) to sustain themselves throughout the whole rehearsal

or performance (Sousa et al., 2013).

To gain a better understanding of how nutrient intake levels can effect

a dancer’s performance, most of the prior research conducted in the dance

world explores whether there exists differences in nutrient intake between

a dancer group and a non-dancer group; or, if there exists any difference in

nutrient intake between days of consumption. For example, Brown et al.

(2017) computed three separate paired sample t-tests to compare total en-

ergy intake (TEI) and total energy expenditure (TEE) across the whole week,

the weekend, and the weekdays. TEI did not discernibly differ between

the weekends and the weekdays, while energy balance (EB) and TEE did.

Note, energy balance is the difference between total energy intake and total

energy expenditure. Additionally, the dancers were found, on average, to

have a negative EB – a common trend in dancers. Brown et al. (2017) also

noted that the dancers narrowly achieved the recommended carbohydrate

and protein intake levels.

Similarly, Lim et al. (2015) conducted a study to compare Korean

dancers, ballet dancers, contemporary dancers, and non-dancers, where no

difference in nutrient intake, body composition in mean lean tissue, bone

mineral density, or isokinetic muscular function was found between the

groups. Like the results seen in Brown et al. (2017), Lim et al. (2015) found

6



that nutrient intake needs to be increased, across dancers and non-dancers

alike.

Friesen et al. (2011) conducted a multivariate analysis of variance

(ANOVA) to compare nutrient intake and body composition between a

group of 31 female collegiate dance majors and 30 non-dancers from a large

university. Unlike Brown et al. (2017) and Lim et al. (2015), this study fo-

cused on understanding the prevalence of the female triad in dancers. The

study found that there was no significant difference in body composition,

bone mineral density, or diet composition between the two groups. How-

ever, on average, the percentage of fat was higher in non-dancers. Over-

all, the study found that the collegiate dance majors had greater muscle

strength, higher bone mass near the spine and hips, as well as a lower body

fat percentage compared to non-dancers.

To better understand how differing levels of protein and carbohydrate

intake affect body composition and performance, Frost Brown et al. (2017)

conducted a one-way ANOVA on 30 collegiate female dancers from the

Florida State University School of Dance. The study found that there were

no significant differences in the dancer’s characteristics, their body com-

position, or their performance quality. Similarly, there was no difference in

their carbohydrate intake or fat intake, but their was a significant difference

in their protein intake.

Another measure of body composition relevant to dancers is fat free

mass (FFM) – the amount of an individual’s body weight the does not con-

tain fat. We note that FFM is inversely related to percent body fat by the

relationship: FFM = Weight ∗
(
1− % body fat

100

)
. In their work, Yannakoulia
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et al. (2000) developed multiple predictive models for FFM based on mea-

surements from the bioelectrical impedance analysis (BIA) method. This

method was used to gather measures like resistance and reactance from 42

young, female dancers in a professional dance school in Athens, Greece.

Four regression models were built to predict FFM based on the BIA method

measurements as well as the height and weight of the dancers. Together,

these four predictors explained more than 80% of the variance in FFM.

While these studies help us better understand the nutritional tendencies

of dancers, they fail to account for the error in measuring their long-term

average nutrient intake. With all common methods used to measure nutri-

ent intake, including food diaries and 24-hour recall, there is an error as-

sociated with estimating the usual intake based on the observed data. This

error is typically called measurement error and it occurs when we can not

directly observe our variables of interest. For example, it is nearly impossi-

ble to know the true, long-term average amounts of various nutrients that

an individual consumes overall based on just a few days of observed data.

So, we must consider the observed intakes as the noisy measurements of

the true, long-term average nutrient intakes. Depending on how large the

measurement error is for a certain observation, the difference between the

observed value and the true value could be very large. Therefore, simply

using the observed values as being equivalent to the long-term averages in

a model would result in an inaccurate representation of the true values and

produce very misleading results.

In this work, we propose a linear measurement error model to describe

the relationship between the nutrition information, body composition, and
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energy levels of 25 pre-professional contemporary dancers; data are from

the Brown et al. (2017) study. Unlike past work, we provide new insight

to the dance field by developing a regression model that accounts for the

error in estimating usual intake. This is the first example of a measure-

ment error model analysis for dancers, to the best of our knowledge. How-

ever, like previous work, the regression models we built consider important

body composition variables like FFM as well as nutrition variables like TEI,

protein, and carbohydrates. In Chapter 2, we outline the methodology for

a measurement error model and provide consistent estimators for the pa-

rameters. We outline the methodology first for the simple regression model,

then extend to the multiple regression case. Following the previous work in

the field of dance as a guideline, in Chapter 3, we apply the measurement

error model to the Brown et al. (2017) data to describe the dependency of

fat free mass, total energy intake, and energy balance on various macronu-

trients like carbohydrates and protein. Finally, in Chapter 4, we draw con-

clusions about the research, explain some of the limitations we noticed in

our model, and explore questions for future research.
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CHAPTER 2

Methodology: Measurement Error Model (MEM)

In this chapter, we outline the parameter estimates for the simple and

multiple measurement error regression models. In Section 2.1, we define

the model (including introducing notation) and the consistent estimators

for the simple linear regression measurement error model. At the end of

Section 2.1, we emphasize the importance of using a measurement error

model by explaining what happens to the parameter estimates when we

fail to account for measurement error. In Section 2.2, we define the model

and estimators for the multiple linear regression measurement error model.

2.1. Simple Linear Regression Measurement Error Model

2.1.1. The Model. For simplicity, we begin with a measurement error

model with only one predictor, xi , and one response, yi , for i = 1,2, ...,n

individuals. Following Fuller (2009), our overall regression model is,

yi = β0 + β1xi + qi , (2.1)

where qi ’s are distributed as N (0,σqq), are independent of the xi ’s, and are

known as the error in the equation.

We are interested in a situation where we do not directly observe the

predictor or the response. Instead, we observe a noisy measurement of our

10



predictor and response, where,

Yij = yi +wij , (2.2)

Xij = xi +uij , (2.3)

where j = 1,2, ...,mi represents the number of replications for each individ-

ual i. Here, both Yij and Xij represent the observed daily intakes, yi and xi

represent the true, long-term average intake values, and wij and uij repre-

sent the errors in observing yi and xi . For estimation purposes, we assume

that the response and predictor are independent and normally distributed:

yi ∼ N (µy ,σyy) and xi ∼ N (µx,σxx). Since the measurement errors between

our response and predictors could be correlated, we define,wij

uij

 ∼N


00

 ,
σww,σwuσwu ,σuu


 . (2.4)

Combining the regression model in (2.1) with the measurement error

model for Y and X in (2.2) - (2.3) we have that,

Yij = β0 + β1xi + εij , (2.5)

where εij ∼ N (0,σee) and εij = wij + qi is the sum of the error in measuring

yi , wij , and the error in the equation, qi .

2.1.2. The Estimators. The maximum likelihood estimators for the pa-

rameters in the simple linear regression model in (2.5) are well established

by Fuller (2009) and Buonaccorsi (2010). Note, the average value for a pre-

dictor for each individual is defined by,

Xi· =
1
mi

mi∑
j=1

Xij , (2.6)
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and similarly for a response,

Y i· =
1
mi

mi∑
j=1

Yij . (2.7)

Further, we define the average value of the predictor across all the individ-

uals as,

X ·· =
1
n

n∑
i=1

Xi· (2.8)

and similarly for the response,

Y ·· =
1
n

n∑
i=1

Y i·. (2.9)

We now estimate the coefficients of the measurement error model out-

lined in (2.5). To compute the estimators in (2.15) and (2.16), we will need

to estimate the day-to-day variability and the overall variability for both the

response and the predictors. The unbiased estimators for the within-person

variance and covariance are,

σ̂ww =
1
n

∑∑
σ̂wwi

=
1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Yij −Y i·)
2, (2.10)

σ̂uu =
1
n

∑∑
σ̂uui =

1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Xij −Xi·)
2, (2.11)

σ̂wu =
1
n

∑∑
σ̂wui =

1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Xij −Xi·)(Yij −Y i·), (2.12)

where σ̂ww is the estimator for the variance in the response, σ̂uu is the es-

timator for the variance in the predictors, and σ̂wu is the estimator for the

covariance between them.

12



The estimators for the between-person variances, or the overall variabil-

ity, are,

mXX =
1

n− 1

n∑
i=1

(Xi· −X ··)2, (2.13)

and,

mXY =
1

n− 1

n∑
i=1

(Xi· −X ··)(Y i· −Y ··). (2.14)

Combining (2.10)-(2.14), we can define unbiased, consistent estimators

for our regression coefficients by,

β̂1 =
mXY − σ̂wu
mXX − σ̂uu

, (2.15)

and,

β̂0 = Y ·· −X ··β̂1. (2.16)

As a note for the reader, an estimator is considered consistent if it con-

verges in probability to the true parameter value as n gets large.

The variance in β̂1 is estimated by,

V̂ar(β̂1) =
1
n

[
svv

mXX − σ̂uu
+

1
(mXX − σ̂uu)2 (σ̂uusvv + (σ̂wu − β̂1σ̂uu))2

]
+

1
(mxx − σ̂uu)2

[
σ̂uusrr + (σ̂wu − β̂1σ̂uu)2

]
(2.17)

where svv = 1
n−1

(∑n
i=1(Yi − β0 − β1Xi)2

)
and srr = σww − 2(β̂1σwu) + β̂2

1σuu .

We note that the estimator for β0 in (2.16) is essentially identical to the

parameter estimator for β0 in the naive simple linear regression case. Fur-

ther, there is a similarity between the mXX value for the measurement error
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model and the parameter estimator for β1 in the naive simple linear regres-

sion model. However, the difference for the β1 estimator in the MEM case

is that we account for noisiness in the data by accounting for the within-

person variability. See Section 5.1 in the Appendix for a brief layout of the

naive simple linear regression model.

2.1.3. Reliability Ratio. When using simple linear regression to model

noisy data, the traditional least squares estimator does not account for the

measurement error or the potential correlation between the measurement

error in X and Y . In particular, when measurement error is present, the esti-

mator is attenuated towards 0. An illustration of the effect on the regression

coefficients when measurement error is ignored is seen in Figure 2.1. The

data in Figure 2.1 representing the true, long-term averages are simulated

from a normal distribution with mean and standard deviation similar to

that of the observed protein intake seen in the Brown et al. (2017) dataset

(see Section 3.1 in Chapter 3 for more detail). We also simulate the observed

data by adding normally distributed errors to the true, long-term averages

that have a mean and standard deviation of 0.5. We see that the error-prone,

or observed, data (represented by the blue triangles) have much more vari-

ability around the regression line, while true long-term average values (rep-

resented by the pink circles) are much more tightly grouped to the best fit

line. Thus, using a model which treats the noisy data as the truth (without

accounting for additional measurement error) leads to bias in the estimated

parameters of the regression line. This bias results in a regression coeffi-

cient that is attenuated towards zero in the simple linear regression case
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Figure 2.1. Depiction of the comparison between the true
predictor values xi and the observed Xij values.

(Carroll et al., 2006). The attenuation factor is also referred to as the relia-

bility ratio and provides a nice comparison between the β̂ estimator for the

naive simple linear naive regression model and the β̂ estimator for a simple

linear measurement error regression model. We define the reliability ratio

by,

κ = (mXX)−1(mXX − σ̂uu), (2.18)

for σ̂uu defined in (2.11) and mxx defined in (2.13) (Carroll et al., 2006;

Buonaccorsi, 2010; Fuller, 2009). We can then determine the coefficient

for the naive regression model, β̂SLR, by the relationship:
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β̂SLR = κβ̂MEM

= (mXX)−1(mXX − σ̂uu)β̂MEM . (2.19)

In the simple linear regression case, we expect |β̂MEM |≥ |β̂SLR|. Referring to

Figure 2.1, we see that the regression model for the observed data does in-

deed have a smaller slope. Note, the bias in the parameter estimates occurs

in both the simple and multiple regression cases, however it is more clearly

visualized in the simple case, where we see the bias parameter estimates

attenuated towards zero.

2.2. Multiple Regression Measurement Error Model

We now extend the model in (2.1) - (2.5) to allow for multiple predictors.

2.2.1. The Model. For i = 1,2, ...,n individuals and k = 1,2, ...,p predic-

tors, we define xi = (xi1,xi2, ...,xip)′ to be a vector of the true, long-term

averages for each individual i and each predictor k. We then extend the

regression model from (2.1) to be,

yi = β0 +β1β1β1xi + qi (2.20)

where the error in the equation, qi , is distributed as N (0,σqq) and indepen-

dent of the xi ’s and β1β1β1 = (β1,β2, ...,βp)′.

We define Xij = (Xij1,Xij2, ...,Xijp)′ to be a vector of observed intake val-

ues for each individual i across j replications for each predictor k. Similar

to the simple linear case in (2.2) and (2.3), we cannot observe our response
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or predictors directly, so we have,

Yij = yi +wij , (2.21)

Xij = xi + uij, (2.22)

where j = 1,2, ...,mi represents the replications collected for each individual

i. We again see that Yij and Xij represent the observed daily intakes, yi and

xi represent the true, long-term average intake values with wij and uij as

their respective errors.

We reach a similar final model as in (2.5) where,

Yij = β0 +β1β1β1xi + εij , (2.23)

for εij = wij + qi , the sum of the error in the measuring yi plus the error in

the equation.

2.2.2. The Estimators. Following from Section 2.1.2, the average for

each individual for each predictor is a n × p matrix, Xi·. The average value

for the response is a n × 1 matrix, Y i·, the same as defined in Section 2.1.2.

The average across all the individuals for each predictor is a 1 × p vector,

denoted by X ··X ··X ·· which contains the mean for each predictor. Similarly, we

average across all the individuals for the response and receive a single aver-

age value, Y ··. Note, this value is the same as in the simple case (2.9), since

we only are considering a model with one response.
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Extending the estimators defined in (2.10)-(2.12), we define the within-

person variances measuring the day-to-day variability as,

Sww =
1
n

∑∑
Swwi

=
1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Yij −Y i·)
2, (2.24)

Suu =
1
n

∑∑
Suui =

1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Xij −Xi·)
′(Xij −Xi·), (2.25)

Swu =
1
n

∑∑
Swui =

1
n

n∑
i=1

1
mi − 1

mi∑
j=1

(Xij −Xi·)
′(Yij −Y i·). (2.26)

The variances in (2.24) - (2.26) are similar to those in the simple linear

regression case, except we now have another dimension to account for the

multiple predictors. In other words, there are n, values for Swwi
(overall

dimension of 1×1×n); n, k×k matrices for Suui (overall dimension of k×k×n);

and n, k×1 vectors of Swui (overall dimension of k×1×n). When computing

the estimates for Sww, Suu , and Swu (see Appendix 5.3.1 for more details),

we average across the first and second dimensions. We then end with a

single value for Sww, a k × k matrix for Suu , and a k × 1 vector for Swu . If

there is no measurement error present in the predictor or response, these

variances are zero.

Extending the definitions of the estimators in (2.13) and (2.14), we de-

fine the between-person or overall variability as,

MXX =
1
n

n∑
i=1

(Xi· −X ··X ··X ··)
′(Xi· −X ··X ··X ··), (2.27)
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and,

MXY =
1

n− 1

n∑
i=1

(Xi· −X ··X ··X ··)
′(Y i· −Y ··), (2.28)

where MXX is a p × p matrix and MXY is a p × 1 vector.

Similarly, following from (2.15) and (2.16), we define the unbiased, con-

sistent estimators for our regression coefficient by,

β̂1β̂1β̂1 =
MXY −Swu
MXX −Suu

, (2.29)

and,

β̂0 = Y ·· −X ··X ··X ··β̂1β̂1β̂1, (2.30)

where β̂1β̂1β̂1 is a p × 1 vector and β̂0 is a single value.

The variance in β̂1β̂1β̂1, a p × p matrix, is estimated as,

V̂ar(β̂1β̂1β̂1) =
1
n

[
M̃−1

xx svv + (M̃xx)−1(SuusvvS̃ ′uvS̃uv(M̃xx)−1)
]

+M̃−1
xx

[
Suusrr + S̃ ′uvS̃uv

]
(M̃xx)−1, (2.31)

where svv = 1
n−p

(∑n
i=1(Yi −Xiβ̂1β̂1β̂1)2

)
, srr = Sww − 2(β̂1β̂1β̂1Suu) + (β̂′1β̂

′
1β̂
′
1Suuβ̂1β̂1β̂1),

M̃xx = MXX − Suu , and S̃uv = Suw − Suuβ̂1β̂1β̂1.
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CHAPTER 3

Application

In this chapter, we investigate the relationship between the average nu-

trient intake, body composition, and energy levels of pre-professional, con-

temporary dancers. In Section 3.1, we explore the data shared with us by

Brown et al. (2017). We describe how the data were collected and note how

these data compare to current recommended dietary intake values. In Sec-

tion 3.2, following the previous work completed in the dance world as a

guideline, we present models to help explain the dependency of fat free

mass, total energy intake, and energy balance on important nutrients. We

conclude the chapter, in Section 3.3, by outlining the assumptions of the

error terms in our model and use visual diagnostic tools to address whether

these assumptions are reasonably met.

3.1. Description of the Data

The data we analyze in this work were collected as a part of a study

published by Brown et al. (2017). The 25 pre-professional female under-

graduate contemporary dance students in the study were participating in a

three-year, full-time undergraduate dance program. Prior to the study, the

dancers were asked to complete the Healthier Dance Practice National Sur-

vey which requested information on their dietary and dance history (Laws

and Apps, 2005). In addition to the questionnaire, standard skinfold tech-

niques were used to get measurements related to their body composition,
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such as waist to hip ratio, percentage body fat, and fat free mass (FFM).

Also reported in the survey was demographic information on each dancer

(including their height, weight, age, years of study, etc.). To calculate their

total energy intake (TEI), the dancers were required to complete a 7-day

weighed food diary that required them to weigh all food and drink at the

time of consumption. For the food diary, the participants were instructed

to provide clear descriptions on their food and fluid intake, including the

time of consumption, how much they ate, and the brand names. To cross-

reference and clarify any ambiguous information in the food diary, each

dancer also participated in a 24-hour recall interview, where they were

asked to verbally report what they ate in the past 24-hours to the researcher.

The data collected from both the interview and the diary were used to calcu-

late TEI per day for each dancer. Also reported in the data were the amount

of each nutrient consumed each day (e.g., protein, carbohydrates, water,

various sugars, various vitamins, etc.). Total energy expenditure (TEE) was

estimated using a tri-axial accelerometer. The accelerometer measures the

vibrations of the dancer’s hip in three perpendicular directions to deter-

mine how fast and in which direction the dancer is moving. The accelerom-

eter was worn on the dancer’s right hip at all times during the 7-day period,

excluding activities in which the device would be submerged in water or

cause discomfort during sleep.

3.1.1. Characteristics of the Data. To gain an understanding of how

the dancers in the Brown et al. (2017) study compare to the average dancer,

we compare the nutrient intake of these dancers with the current dietary

recommendations for the average dancer or the average young, female
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adult, depending on the recommendations available. We note that due to

the active lifestyle and dietary choices of dancers, the recommended levels

differ slightly than the recommended values for the average person or even

the average athlete. By examining current literature, we can determine the

recommended nutrient values specific to female dancers (Sousa et al., 2013;

Clarkson, 2005; Chandler, 2018; Rodriguez et al., 2009; Campbell et al.,

2007). For example, Sousa et al. (2013) gathered their recommended val-

ues from the American Diet Association for active and competitive adults.

They then adjusted the recommended values slightly to account for the low

caloric intake of the average dancer. Sousa et al. (2013), Clarkson (2005),

and Rodriguez et al. (2009) each report the recommended intake of dancers

for carbohydrates as 3 to 5 g/kg/day and the recommended intake for pro-

tein as 1.2-1.7g/kg/day. Additionally, a dancer’s TEI must be composed

of 20%-35% fat in order to avoid affecting performance quality. Further,

dancers are advised to consume more than 2 liters of water per day in order

to maintain hydration during long rehearsal sessions.

In Table 3.1, we see that, on average, the dancers in the Brown et al.

(2017) study met or exceeded the recommended intake values for protein,

carbohydrates, and water. In general, we see that the variability of intake

in these macronutrients is small relative to the mean. While the dancers

appear to meet the recommended intake value for protein, on average they

are close to the lower bound of the recommended intake range. However,

unlike protein, the dancers almost exceed the recommended intake level

for carbohydrates, on average. Additionally, we see that the dancers in the
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Brown et al. (2017) dataset, on average, exceed the recommended intake for

water.

Table 3.1. Macronutrients Table

Protein Carbohydrate Water
Current Recommendation 1.2− 1.7 g/kg 3− 5 g/kg at least 2L

Minimum 0.84 2.95 2.18
1st Quartile 1.13 4.56 2.98

Median 1.27 5.05 3.35
3rd Quartile 1.46 5.66 4.61
Maximum 1.96 7.31 5.07

Mean 1.28 4.96 3.64
Standard Deviation 0.267 0.94 0.88

Although the dancers in the Brown et al. (2017) study appear to be meet-

ing the requirements for macronutrients on average, we are also interested

in assessing whether these dancers are meeting the recommendations for

various micronutrients. Dancers, particularly those that resort to restric-

tive eating habits, are at a greater risk compared to the normal population

for micronutrient deficiencies (Chandler, 2018; Sousa et al., 2013; Clark-

son, 2005; Rodriguez et al., 2009). Some restrictive eating habits encourage

removing certain food groups, which could lead to deficiencies in micronu-

trients such as iron, calcium, and vitamin D. For the recommended values

of these micronutrients, we look at the recommendations for an average

19-30 year-old female from the National Institute of Health (NIH) Dietary

Reference Intakes (DRI) (Del Valle et al., 2011). According to the NIH, the

recommended value for iron is 18mg/day, for calcium is 1000 mg/day, and

for vitamin D is 15µ g/day for 19-30 year-old females.
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In Table 3.2, we see that, on average, the dancers of the Brown et al.

(2017) study have met or exceeded the recommended micronutrient intake

values, except for calcium where over 75% of the dancers did not meet the

recommended level. On average, the dancers have well exceeded the rec-

ommended values for iron and vitamin D. Note, that there are a few larger,

outlying intake values for iron and vitamin D that could be influencing the

average intake across all dancers. We also see that the spread of the data for

all three micronutrients is much larger than the spread of the macronutri-

ents data, potentially due to a few large outliers in the dataset.

Table 3.2. Micronutrients Table

Calcium Iron Vitamin D
Current Recommendation 1000mg 18mg 15µg

Minimum 148.30 2.59 1.22
1st Quartile 364.50 6.87 2.15

Median 673.10 12.43 2.77
3rd Quartile 757.30 16.20 5.39
Maximum 1060.90 154.01 1002.28

Mean 611.50 20.80 53.15
Standard Deviation 259.31 32.64 199.77

Ultimately, we are interested in how the dietary intake of the macronu-

trients and micronutrients relates to a dancer’s body composition and en-

ergy levels. In Table 3.3, we look at values relating to the body composition

and energy levels of the dancers in the study. Given the pressure for dancers

to maintain a low body fat, we are interested in their fat free mass (FFM),

which is the mass of all the body components except fat. We were unable

to find a recommended value for FFM for dancers, however we see that the
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dancers in the Brown et al. (2017) study have an average FFM of around

45kg. Additionally, we see that the variability of the observed data for FFM

is relatively small, with values ranging from about 39kg to just over 45kg.

Further, we are curious to see if the pressure of maintaining a low body

fat has an effect on the total energy intake (TEI) of these dancers. In gen-

eral, dancers who train more frequently are estimated to intake 45-50 calo-

ries per kilogram of body weight. To get an overall recommended range

for TEI, we multiplied the overall average weight of the dancers (63.408

kg) by the recommended caloric intake per kilogram of body weight range

(Clarkson, 2005). While TEI is based solely on nutrient consumption, total

energy expenditure (TEE) is comprised of three general components: rest-

ing energy expenditure, dietary induced thermogenesis (the heat produced

in response to the processing of food within the body), and exercise (Pacy

et al., 1996; Health Engine, 2019). To the best of our knowledge, we have

not found a recommended value for TEE (and thus no recommended value

for energy balance (EB)), most likely due to the variability of TEE across

individuals (Rodriguez et al., 2009; Health Engine, 2019). An average TEE

level varies greatly based on the age, weight, and activity level of the in-

dividual. Further, the complexity of measuring TEE hinders the ability to

receive an accurate recommended value. For example, in the Brown et al.

(2017) study, TEE is measured through a tri-axial accelerometer. However,

in other studies a calculation of Metabolic Equivalents (METs), a measure

of physical activity based on oxygen consumption, was used to estimate

TEE in calories (Health Engine, 2019). Yet even other studies used indi-

rect calorimetry – a method which uses a ventilator to measure the volume
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and concentration of oxygen taken in and the carbon dioxide released by

an individual (Pacy et al., 1996). There are benefits and disadvantages to

each method. Some methods are more accurate, for example the indirect

calorometry, while other methods are more practical for active individuals,

such as the tri-axial accelerometer.

When we look at the average TEI and EB for the dancers in the Brown

et al. (2017) study in Table 3.3, we see that the variability of observed TEI

and EB are much larger than the variability of FFM. We also notice that

the dancers in the Brown et al. (2017) study, on average, fall below the rec-

ommended intake values by over 500 calories per day. While low caloric

intake is concerning, it does align with many previous studies (Lim et al.,

2015; Friesen et al., 2011; Pacy et al., 1996). We also notice that the average

EB for the dancers in the Brown et al. (2017) study is negative, indicating

that they are expelling more energy than they are consuming. Since the

dancers fall below the recommended nutrient intake values, it is not sur-

prising that their average EB is negative. Again, while concerning, this was

also seen in many previous dance studies (Lim et al., 2015; Friesen et al.,

2011; Pacy et al., 1996).

Table 3.3. Body Composition and Energy Levels Table

Fat Free Mass Energy Intake Energy Balance
Current Recommendation 2,853.36-3,170.40 (Kcal/day)

Minimum 39.43 1630.00 -2036.75
1st Quartile 41.78 2083.00 -902.00

Median 45.91 2470.00 -119.46
3rd Quartile 49.51 2730.00 43.67
Maximum 52.00 3265.00 517.30

Mean 45.52 2428.00 -355.68
Standard Deviation 4.27 450.05 656.61
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3.2. Estimating the Association Between Dietary Intake, Body
Composition, and Energy Levels

In Chapter 2, we introduced a model to describe the dependency of a

response on a predictor – both potentially observed with measurement er-

ror. In this section, we attempt to use the linear measurement error model

in (2.23) to describe the dependency of a dancer’s body composition and

energy levels on their nutrient intake.

In order to estimate the regression coefficients of the models that will be

described in Section 3.2.1, we built a function to be used in the statistical

software, R (version 3.4.3). The code can be found in Section 5.3.1 of the

Appendix. As inputs, the function requires an nm×1 vector for the response

variable, an nm× p matrix for the predictor variables, and an nm× 1 vector

containing a unique identifier for the participants. Note, for each individual

i = 1, ...,n there are mi rows of data, depending on the number of days of

data collected for each individual i. For example, in our dataset, we have 25

dancers each with 7 days of data, so we have a 175×1 vector for the response

variable, a 175×p matrix for the p predictor variables, and a 175×1 vector of

the 25 unique identifiers. As outputs, the function computes the statistics

based on the estimators described in Section 2.2.2: a px1 β̂1β̂1β̂1 vector, a single

value for β̂0, and a pxp V̂ar(β̂1β̂1β̂1) matrix.

3.2.1. Estimation in the Linear Measurement Error Model. In this sec-

tion, we describe three different models that examine the possible relation-

ships between the body composition, energy levels, and dietary intake of

the female dancers in the Brown et al. (2017) study. Since previous re-

search, such as Krieger et al. (2006) and Sousa et al. (2013), emphasize the
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impact of macronutrients on fat free mass and energy levels, we chose to

focus on carbohydrates and protein as predictors, rather than the micronu-

trients. Further, preliminary analysis showed that models including wa-

ter and the various micronutrients described in Section 3.1.1 did not meet

the measurement error assumptions (see Section 5.2 in the Appendix for

a more-detailed discussion). In the following Sections 3.2.1.1 - 3.2.1.3, we

provide parameter estimates for both the measurement error model out-

lined in Section 2.2 as well as the naive estimates for a model assuming no

error in estimating the long-term average intake (see Section 5.1). We will

focus on the measurement error model estimates in this Chapter, however

a discussion comparing the naive estimates with the measurement error es-

timates is in Chapter 4.

3.2.1.1. Fat Free Mass. Recall from Section 3.1.1, that FFM describes the

amount in kilograms of an individual’s body weight that does not contain

fat. As indicated by Krieger et al. (2006), researchers have shown that a low

carbohydrate and a high protein diet can retain FFM levels in an individual.

With more protein, the individual would have an increased nitrogen bal-

ance which is essential to retaining FFM. Thus, it follows that the amount

of fat in a dancer’s body composition may be influenced by factors such as

carbohydrates and proteins.

Given the findings from Krieger et al. (2006), we consider a model to

investigate the dependency of FFM on the intake of protein and carbohy-

drates. Table 3.4 shows the test statistics, standard errors, and confidence

intervals, for the parameter estimates of both the naive model and the mea-

surement error model.
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Table 3.4. Estimates for the FFM Model

X-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

β̂MEMβ̂MEMβ̂MEM SEβ̂MEM
SEβ̂MEM
SEβ̂MEM

t-stat 95% CI

Carb -1.33 0.37 1.36 1.57 0.87 (-1.87,4.60 )

Protein -0.61 1.31 0.71 4.40 0.16 (-8.39, 9.80)

Looking at the estimates in Table 3.4, we notice that the test statistic for

both protein and carbohydrates are very small. These values, along with

the confidence intervals, indicate that we do not have enough evidence to

claim that protein or carbohydrates have an impact on FFM (while holding

the other predictor constant) for the contemporary dancers in the Brown

et al. (2017) study. In an attempt to control for the different weights of the

individuals, we explored a model that included weight as a third predictor

(similar to the TEI and EB models in Sections 3.2.1.2 and 3.2.1.3). However,

we decided to not include weight in the final model, as it did not meet the

model assumptions (see Chapter 4 for more details).

3.2.1.2. Total Energy Intake. In the next model, we look to predict to-

tal energy intake (TEI) based on protein, carbohydrates, and weight. As

stated before in Section 3.1.1, it is crucial that dancers, as well as the gen-

eral public, consume the proper amount of protein and carbohydrates to

maintain a healthy lifestyle. Further, as mentioned in Chapter 1, it is criti-

cal that a dancer ingests enough protein to sustain their energy level, both

physically and mentally, for an entirety of rehearsal. Dancers should also

consume enough carbohydrates in order to delay fatigue during these long

practice sessions. Thus, while other food groups might have an effect on

TEI, one would expect that the most impactful for dancers are protein and

29



carbohydrates. Also, as described by Chandler (2018) and other nutrition

based websites (Health Engine, 2019; Sousa et al., 2013; Jodhun et al., 2017;

Rodriguez et al., 2009), TEI is largely based on how frequently food is con-

sumed by an individual as well as the weight or body mass index of that

individual. Unlike the model for FFM, we include weight as a predictor for

the TEI model to control the effect that weight has on TEI and gain a better

understanding of how carbohydrates and protein impact TEI.

In order to understand how protein and carbohydrates may relate to

TEI for the contemporary dancers in the Brown et al. (2017) study, we fit

a model using carbohydrates, protein, and weight as predictors. Looking

at the estimates in Table 3.5, we notice that the test statistic for protein is

small, while the test statistics for carbohydrates and weight are large. Based

on the parameter estimates and confidence intervals, we see that we have

enough evidence to claim that carbohydrates and weight have a significant

impact on TEI (while holding the other predictors constant), however, we

do not have enough evidence to claim that protein has an impact on TEI.

Table 3.5. Estimates for the Total Energy Intake Model

X-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

β̂MEMβ̂MEMβ̂MEM SEβ̂MEM
SEβ̂MEM
SEβ̂MEM

t-stat 95% CI

Carbs 262.15 22.21 390.55 134.20 2.91 (112.24, 668.86)

Protein 848.62 83.52 252.21 409.78 0.62 (-597.63, 1102.04)

Weight 45.17 3.07 40.09 10.62 3.77 (18.06, 62.13)

3.2.1.3. Energy Balance. After building the model for TEI, we were cu-

rious to see how carbohydrates and protein affect TEI, while accounting

for TEE. Thus, following a similar structure to the TEI model, we built a

model for energy balance (EB) using carbohydrates, protein, and weight
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as predictors. As described in Section 3.2.1.2, both protein and carbohy-

drates are expected to have a large impact on TEI and thus EB. Further, we

include weight as a predictor again to control its effect on EB (Health En-

gine, 2019; Joseph and Carriquiry, 2010; Sousa et al., 2013; Rodriguez et al.,

2009). Looking at Table 3.6, we see that the parameter estimate for carbo-

hydrates has a large test statistic, while the estimates for both protein and

weight have very small test statistics. Additionally, the confidence inter-

vals for these parameter estimates indicate that we have enough evidence

to claim that carbohydrates have a significant impact on EB (while holding

protein and weight constant).

Table 3.6. Estimates for the Energy Balance Model

X-ValuesX-ValuesX-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

β̂MEMβ̂MEMβ̂MEM SEβ̂MEM
SEβ̂MEM
SEβ̂MEM

t-statt-statt-stat 95% CI95% CI95% CI
Carb 181.08 48.53 467.10 202.28 2.31 (47.59, 886.60)

Protein 987.42 182.51 116.53 585.40 0.20 (-1097.53, 1330.58)
Weight -6.36 6.71 -9.45 19.97 -0.47 (-50.86,31.96)

3.3. Model Diagnostics

3.3.1. Measurement Errors. As with any statistical model, we must

make some assumptions about the errors in the model. One way to deter-

mine whether these assumptions are upheld are through visual diagnostic

tools. The diagnostic tools used here are ones suggested by Carroll et al.

(2006).

As stated in Section 2.1.1 and 2.2.1, we assume that the variance in the

errors of our predictors, uij , are independent of the xi ’s. To check this as-

sumption, we plot the sample standard deviations of Xij for each individual

i against the respective sample mean, X̄i . If there are not any obvious trends
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in the plot, we can assume that the measurement error variance is indepen-

dent of the xi ’s. We check this assumption for our two predictors of intake:

protein and carbohydrates (see Figure 5.2 in Appendix 5.2.1). Both plots

show minimal trends, especially taking into account the small sample size

of the Brown et al. (2017) dataset.

Similarly, we check that the measurement error variance does not de-

pend on the predictors without measurement error. Since weight is only

measured once for each individual over the course of the study, we would

consider weight to be a variable measured without measurement error. To

check this assumption, we plot the sample standard deviations of each Xij

for each individual i against the sample mean for weight. As seen in Fig-

ures 5.3 in Appendix 5.2.1, overall these plots are generally well-scattered,

so we can reasonably assume that the measurement error variance does not

depend on weight.

To estimate the model in 2.1.1 and 2.2.1, we also assume that the mea-

surement errors are normally distributed. To check this assumption, we

create a Normal Quantile-Quantile (QQ) plot for the measurement errors,

uij (estimated by ûij = Xij − X̄i), where we plot the quantiles of the mea-

surement errors against the quantiles from a normal distribution, as this is

the true (assumed) distribution of interest. As seen in Figure 5.4, most of

the ûij values follow closely to the line, except at the tails, not surprisingly,

given the small sample size.

3.3.2. Residuals. As a reminder to the reader, the residuals are the dif-

ference between the observed and predicted response values. In simple lin-

ear regression, our residual values would be εi . However, we must account
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for the error in measuring xi , so the residuals for the measurement error

model are defined as:

νi = εi +βββui , (3.1)

where νi is analogous to the error terms (or the deviations from the popu-

lation regression line) in the naive regression model. Note, that εi and ui ,

defined in (2.2)-(2.5), have constant variance, therefore νi also has constant

variance. Additionally, since εi and ui are independent of the xi ’s, we know

that the expected value of νi given xi is 0. In an ordinary least squares

regression, it is common to plot the residuals against the independent vari-

ables to provide clarity on nonlinearity in the regression and lack of homo-

geneity of the error variances. However, since the Xi ’s are dependent on the

ui values, we cannot plot the residual values against the Xi ’s. So, instead

of using the observed sample average X̄i , we define an alternate estimator

for the unobservable predictors, x̂i , to plot with our estimated residuals, ν̂i

(Fuller, 2009).

3.3.2.1. Best Linear Unbiased Predictor for Long-Term Average Intake. In

order to assess the assumptions of the errors in the equation, εi , we de-

fine the Best Linear Unbiased Predictor (BLUP) for xi , denoted x̂i , following

Carroll et al. (2006), Bertsekas and Tsitsiklis (2002), and Curley (2017). We

define the BLUP for xi to be the value of E(xi |Xi), where Xi is the average

over each individual i. To determine this expected value, we define the joint

distribution between xi and Xi to be:xiXi

 ∼N


 µx

µx + µu

 ,
 σxi σxiXi

σxiXi
σXi


 . (3.2)
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Recall, from Chapter 2, we define the measurement errors as uij ∼

N (0,σuijuij ) and thus, the average over the measurement errors for each

individual i is defined as ui· ∼ N (0,σui·ui·). In the Brown et al. (2017)

dataset, there are seven days of data for each individual i, so we can de-

fine σui·ui· =
1
7σuijuij .

Using properties of covariances, we further simplify the covariance be-

tween the long-term average intake (unobserved) and observed predictor.

We can rewrite σxiXi
as,

Cov(xi ,Xi) = Cov(xi ,xi +ui·)

= E(xi(xi +ui·))−E(xi)E(xi +ui·)

= E(x2
i + xiui·)−E(xi)[E(xi) +E(ui·)]

= E(x2
i ) +E(xiui·)−E(xi)

2 −E(xi)E(ui·)

= E(x2
i )−E(xi)

2 xi ’s uncorrelated with ui· & E(ui·) = 0

= σxixi .

(3.3)

Following Carroll et al. (2006) and Bertsekas and Tsitsiklis (2002), we

define E(xi |Xi) using properties of the conditional expectation of jointly nor-

mal random variables:

E(xi |Xi) = µxi +
σxixi

σxixi + σui·ui·
(Xi − (µxi + µui·)). (3.4)

Using the BLUP, x̂i , we defined in (3.4), we can estimate the unobserv-

able long-term average intake as:

x̂i = µ̂xi +
σ̂xixi

σ̂xixi + σ̂ui·ui·
(Xij − µ̂xi ), (3.5)

noting that µui· = 0.
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Specifically for the Brown et al. (2017) dataset, since σui·ui· =
1
7σuijuij , we

predict the unobservable long-term average intake xi by,

x̂i = µ̂xi +
σ̂xixi

σ̂xixi + 1
7 σ̂uijuij

(Xij − µ̂xi ). (3.6)

Following the estimators outlined in Section 2.2.2, we define σXi
to be

MXX , where MXX is estimated by σ̂xixi + 1
7 σ̂uijuij . Incorporating this idea, we

can define x̂i to be:

x̂i = µxi +
MXX − 1

7 σ̂uijuij

MXX
(Xij − µ̂xi ). (3.7)

3.3.2.2. Estimated Residuals. As mentioned previously, we are not able

to observe νi directly and therefore must estimate it. We define an estimator

for νi , the residuals, to be

ν̂i = Yi −XiXiXiβ̂̂β̂β. (3.8)

As mentioned in the beginning of the section, it is common to plot the

residuals against the independent variables to better understand the pres-

ence of homoskedasticity in the errors in a measurement error model. Since

we do not observe νi and xi directly, we plot ν̂i against x̂i for each of the pre-

dictors of all three models (see Section 3.2.1 for more details) in Figures 5.5-

5.7 in the Appendix . Overall, the residual plots for each of the models have

decent scatter and lack any significant patterns.
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CHAPTER 4

Discussion

As discussed in Chapter 1, due to the pressure of maintaining a desired

physique, dancers often resort to restrictive eating practices that focus on

maintaining a low body fat. For this reason, it is important to analyze the re-

lationship between nutrient intake and body composition in dancers. How-

ever, as with all nutrient intake data, we must account for the noisy mea-

surements in estimating long-term average intake. Following Fuller (2009),

in this study, we proposed a measurement error linear regression model to

investigate the impact on the nutrient intake of dancers. In Chapter 1, we

outlined the previous research that has been performed in the dance world

to provide insight on the nutrition of dancers at the collegiate level. In

Chapter 2, we explained the methodology of the measurement error model,

describing the parameter estimators for both the simple and multiple re-

gression models. We also discussed the importance of using this method to

analyze noisy data and the need to account for the within-person variabil-

ity. In Chapter 3, we conducted an exploratory analysis of the data from

a study conducted by Brown et al. (2017). To estimate the parameters in

the linear measurement error model, we built a function in the statistical

software, R. In our application, we looked at the relationship between nu-

trient intake, body composition, and energy levels of just 25 collegiate level

contemporary dancers. However, the function in R can easily be extended
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to explore relationships in more comprehensive datasets for any response

and predictors measured with error.

In order to investigate the relationship between the nutrient informa-

tion, body composition, and energy levels of the dancers, we looked at three

different models. In Section 3.2, we described how fat free mass (FFM), total

energy intake (TEI), and energy balance (EB) depend on protein and carbo-

hydrates. In Table 3.4, we saw that both protein and carbohydrates were

not significant in predicting FFM. This was unexpected based on the find-

ings from Krieger et al. (2006), as discussed in Chapter 3.2, which indicated

that a high protein and low carbohydrate diet can retain FFM. Unlike the

models for TEI and EB, we did not include weight as a third predictor in the

FFM model. In the residual plots for the FFM model with weight included,

we saw a clear upward trend in the protein residual plot which violates our

assumptions about the error terms. Ideally, with more data and the ability

to potentially add more predictors, we would no longer see a trend in the

protein residual plot and thus be able to control for the effect weight has on

FFM by including it as a predictor. For both TEI and EB, we saw that protein

did not have an impact on the response, while there was enough evidence

to suggest that carbohydrates did have an impact, as seen in Tables 3.5 and

3.6. Since dancers are recommended to intake a lot of protein and carbohy-

drates, as suggested by Sousa et al. (2013), Clarkson (2005), and Rodriguez

et al. (2009), we were surprised that their protein intake did not have an im-

pact on TEI and EB. We see a couple explanations for this: the small sample

size leading to large variability of the parameter estimates (the Brown et al.
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(2017) study only included data on 25 contemporary dancers), contempo-

rary dancers may be a different population than that of other studies, or, by

accounting for the measurement error, we were better able to detect true

relationships between dietary intake, body composition, and energy levels.

We now discuss a few of these possibilities further.

To emphasize the importance of accounting for the measurement error

that occurs when measuring long-term average nutrient intake, we compare

the naive regression model parameter estimates in Tables 4.1 - 4.3 with the

measurement error model parameter estimates in Tables 3.4 - 3.6. For ex-

ample, in Table 4.1, unlike the measurement error model where neither

protein nor carbohydrates were significant in explaining FFM, we notice

that in the naive model, carbohydrates has a small p-value. Thus, indicating

that we have enough evidence to claim that carbohydrates has an effect on

FFM. Further, looking at Table 4.2, we see that holding the other variables

constant, there is enough evidence to claim that each of the predictors have

an impact on TEI. Recall, from the measurement error regression model

parameter estimates in Table 3.4 that only carbohydrates and weight had

an impact on TEI. Table 4.3 shows the naive estimators for explaining the

relationship between the dancer’s nutrient intake and their EB. Unlike the

measurement error regression model estimates, we have enough evidence to

claim that carbohydrates and protein have an impact on EB (holding weight

constant). However, similar to the measurement error model, we see that

there is not enough evidence to claim that weight has a significant impact

on EB, holding carbohydrates and protein constant. Thus, in each of the

naive models, we saw that there was enough evidence to suggest that almost
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all of the predictors were significant in explaining the respective responses,

holding the other variables in the model constant. This difference in the

estimates and significance of the estimates between the naive and measure-

ment error models is another illustration of the importance in accounting

for the noisiness of the observed data.

Table 4.1. Estimates for the FFM Naive Model

X-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

t-stat p-value

Carb -1.33 0.37 -3.60 0.0004

Protein -0.61 1.31 -0.47 0.64

Table 4.2. Estimates for the Energy Intake Naive Model

X-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

t-stat p-value

Carb 262.14 22.21 11.80 <2e-16

Protein 848.62 83.512 10.16 <2e-16

Weight 45.17 3.07 14.70 <2e-16

Table 4.3. Estimates for the Energy Balance Naive Model

X-Values β̂SLRβ̂SLRβ̂SLR SEβ̂SLR
SEβ̂SLR
SEβ̂SLR

t-stat p-value

Carbs 181.08 48.53 3.73 0.0003

Protein 987.42 182.51 5.41 2.1e-07

Weight -6.36 6.71 -0.95 0.34

In Chapter 3, we discussed the assumptions that we made about the

model, highlighting the visual diagnostic tools that we used to assess these

assumptions. While the assumptions were not perfectly met, the plots only

indicated some concern. One of the challenges we encountered was the
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small sample size of the Brown et al. (2017) dataset. Despite having seven

days of data, we still only had 25 participants. This made it extremely dif-

ficult to have any more than 2-3 predictors in our models as it would de-

crease the degrees of freedom for that model. We remind the reader that

degrees of freedom are the number of values in a statistic that are free to

vary. Thus, for our models specifically, if we used too many predictors to

explain our response, we would begin to affect the parameter estimates and

test-statistics when analyzing the Brown et al. (2017) data. With a larger

dataset, we would have a larger degrees of freedom and therefore we would

have the ability to add more predictors (for example the micronutrients)

to our model to help explain our response. Additionally, with a larger

dataset, we would expect the standard errors of our parameter estimates

to be smaller and therefore increase the precision of the estimates.

As discussed in Chapter 2, we assume that the days of collected data

are independent for each dancer. In other words, the nutrient intake of a

dancer for one day does not influence what they ingest on the following

day. Normally, to avoid violating this assumption, the data are collected a

few days apart. However, in the Brown et al. (2017) dataset, there are seven

days of consecutive data. While the start of the data collection varied by

day of the week for each dancer, there is still some concern that an associ-

ation between the days of nutrient intake exists which could influence the

parameter estimates for our models. To check this assumption, we created

an order plot for each predictor by plotting the unobservable value for the

seven days of data for each individual. We estimate ûij by Xij − x̄i , where x̄i

is an estimate for xi and calculated as an overall average for individual i. If
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daily intakes for an individual are independent, we would expect there to

be no patterns in the plot, meaning that the points are randomly disbursed

around zero. We looked at the order plots for every individual for each

potential predictor and did not see anything that was too concerning. The

order plots for protein and carbohydrates of a few individuals in the dataset

are shown in Section 5.2.3 of the Appendix.

As mentioned earlier, we developed a function that estimates the regres-

sion coefficients for any size dataset (see Appendix 5.3 for details). With

this function, in future work, we could analyze the relationship of the body

composition, energy levels, and dietary intake of dancers in a larger study.

For example, we briefly began exploring similar relationships with data

from the 2003-2004 National Health and Nutrition Examination Survey

(NHANES) – a stratified, multistage survey that collects dietary and health

data from thousands of individuals in the United States. Since dietary data

are collected for 1-2 days, each at least 3 days apart, the data may reasonably

be considered independent. Although these data do not have information

on pre-professional collegiate level contemporary dancers specifically, we

could focus on a different dancer population – individuals that chose dance

as a recreational sport.

Results of a preliminary analysis of these data, using the same models as

defined in Section 3.2 for the Brown et al. (2017) dataset, may be found in

Tables 4.4 and 4.5. Note, we were unable to recreate the model with energy

balance as a response, since the NHANES dataset does not provide energy

expenditure values. For both models, we found similar results for recre-

ational dancers as we did for the collegiate level, contemporary dancers in
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the Brown et al. (2017) study. We found it intriguing that we saw the same

results using a larger, more comprehensive dataset. While these prelimi-

nary results are helpful in understanding the recreational dancer popula-

tion, we still would need to conduct further research to both assess model

fit and account for the unequal probability of selection of participants by

incorporating survey weights for the estimates. Further, given the larger

sample size, we would like to explore models with more predictors. We

would also be interested in comparing how various nutrients impact FFM

and TEI for individuals who dance recreationally versus those who do not.

Table 4.4. Estimates for NHANES Fat Free Mass Model

X-Values βSLRβSLRβSLR SEβSLR
SEβSLRSEβSLR

β̂MEMβ̂MEMβ̂MEM SEβ̂MEM
SEβ̂MEM
SEβ̂MEM

t-stat 95% CI
Carb -2.18 0.25 -1.86 3.29 -0.57 (-8.33, 4.61)

Protein 1.04 0.85 -16.49 12.55 -1.31 (-41.15, 8.17)

Table 4.5. Estimates for NHANES Energy Intake Model

X-Values βSLRβSLRβSLR SEβSLR
SEβSLRSEβSLR

β̂MEMβ̂MEMβ̂MEM SEβ̂MEM
SEβ̂MEM
SEβ̂MEM

t-stat 95% CI
Carb 281.42 12.59 438.52 111.66 3.93 (219.30, 657.73)

Protein 676.58 41.08 107.79 349.21 0.31 (-577.81, 793.39)
Weight 24.14 0.97 25.43 5.21 4.88 (15.20, 35.66)

Despite the challenges of working with a dataset that had a small sam-

ple size and initial concerns around independence, the research discussed

within this paper is novel in its approach to understanding a dancer’s nu-

trition in relation to their FFM, TEI, and EB. As discussed in Chapter 1,

collegiate level dancers often struggle with the pressures of maintaining a

particular body image. As a result, many dancers have a decreased nutrient
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intake and subsequently suffer from various deficiencies and injuries. Fur-

ther, studies that seek to better understand the nutrition of collegiate level

dancers are not as frequently conducted in comparison to similar studies for

athletes in other sports. Thus, the goal of our research was to better under-

stand the factors that influence a dancer’s dietary intake and what this could

potentially mean for their overall health. In this work, we described the re-

lationship between the body composition and energy levels with the nutri-

tion of pre-professional collegiate level contemporary dancers. To account

for the nuisance day-to-day variability when estimating long-term average

intake, we propose a measurement error linear regression model. While

other researchers have studied the nutrition of dancers before (Brown et al.,

2017; Frost Brown et al., 2017; Friesen et al., 2011; Lim et al., 2015; Yan-

nakoulia et al., 2000), they fail to account for the noisiness of the observed

data. Our work has made positive steps towards better understanding the

nutrition habits of contemporary dancers at the collegiate level. While we

do not address the impact that micronutrients have on the dancer’s body

composition and nutritional intake, we provide a clear explanation of the

relationship between protein and carbohydrates with fat free mass, total

energy intake, and energy balance. We hope that this research can be used

by dancers at the collegiate level to gain a better understanding of the nu-

tritional factors that influence their body composition and energy levels.
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CHAPTER 5

Appendix

5.1. Simple Linear Regression Model: Naive Estimators

In this section, we discuss the naive estimators for simple linear regres-

sion. We briefly derive them here to provide a clearer understanding of

where the estimators come from as well as make note of the connection

between the naive regression model estimators and the measurement error

regression model estimators.

We define the simple linear regression model by,

yi = β0 + β1xi + εi , (5.1)

for each observation i = 1, ...,n. The estimators for our regression coef-

ficients are found by minimizing the sum of the squared errors (SSE):∑
ε2
i =

∑
(yi − ŷi)2 =

∑
(yi − (β̂0 + β̂1xi))2, where yi is our observed value and

ŷi is our predicted value.

To minimize the SSE, we set the first derivative of the SEE, with respect

to the intercept, equal to zero:
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d
dβ0

(∑
(yi − (β0 + β1xi))

2
)

= 0

∑(
d
dβ0

(yi − (β0 + β1xi)
)2

= 0

2
∑

(yi − (β0 + β1xi))(−1) = 0∑
(yi − (β0 + β1xi)) = 0

n∑
i=1

yi −
n∑
i=1

β0 −
n∑
i=1

β1xi = 0

nȳ −nβ0 −nβ1x̄ = 0

β̂0 = ȳ − β̂1x̄. (5.2)

Similarly, we can find the estimator for β1:

d
dβ1

(∑
(yi − (β0 + β1xi))

2
)

= 0

∑(
d
dβ1

(yi − (β0 + β1xi))
)2

= 0

2
∑

(yi − (β0 + β1xi)) (−xi) = 0∑
yixi − β0

∑
xi − β1

∑
x2
i = 0∑

yixi − (ȳ − β1x̄)
∑

xi − β1

∑
x2
i = 0∑

yixi − ȳ
∑

xi + β1x̄
∑

xi − β1

∑
x2
i = 0∑

xiyi −nx̄ȳ = β1(
∑

x2
i −nx̄

2)

β̂1 =
∑
xiyi −nx̄ȳ∑
x2
i −nx̄2

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2 (5.3)

Looking back in Chapter 2, there is a clear relationship between the cal-

culation of β̂0 in both the naive and measurement error regression models
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(see equations (5.2) and (2.16)). Additionally, we see that β̂1 in the naive

regression model in (5.3) and mXX in the measurement error regression

model in (2.15) are essentially the same. However, in the measurement

error model, we account for the within-person variability to account for the

noisiness of the observed data.

5.2. Additional Model Diagnostics

In this section, we provide more details regarding the assumptions for

the errors of the measurement error model used in our application de-

scribed in Chapter 3. As noted in Section 3.2.1, we focused on the macronu-

trients as predictors in our models as the micronutrients did not meet the

assumptions for the our measurement errors. Overall, the assumption plots

for the micronutrients often showed patterns or trends, thus violating the

assumptions that the measurement error variances of our predictors are in-

dependent of the xi ’s for predictors measured with and without error. Ad-

ditionally, the Normal Quantile-Quantile plots for the micronutrients did

not follow the line closely, especially at the tails, and therefore violated

the assumption that the measurement errors should approximately follow

a normal distribution. Further, many of the residuals plots for models with

micronutrients as predictors lacked random scatter. As an example of these

violations, in Figure 5.1, we provide the residual plot and Normal Quantile-

Quantile plot for iron in a model where we predict TEI from iron and vita-

min D.
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Figure 5.1. Residual and Normal Quantile-Quantile plot for
iron as a predictor with vitamin D for TEI.

Given the evidence that the model assumptions were violated, and the

emphasis on macronutrients from prior research in the dance field, we fo-

cused our work to examine models with only the macronutrients as predic-

tors. We now provide some details around the models described in Sections

3.2.1.1-3.2.1.3.

5.2.1. Visual Diagnostics for the Measurement Errors. To check

whether the measurement error variances can reasonably be assumed to

be independent of the xi ’s, we plot the sample standard deviation for Xij

for each individual i against the respective sample mean, X̄i ; the plots for

protein and carbohydrates are in Figure 5.2. In these plots, there appear

to be a few outliers for larger intake values of protein and carbohydrates.

Due to the small sample size of the Brown et al. (2017) study, we are not

surprised to see some outliers and larger variability in our observations.
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Given that there is no strong trend overall, we are willing to assume that

the measurement error variance is independent of the xi ’s.

Figure 5.2. Checking Model Assumption 1: Sample standard
deviation for Xij for each individual i against the respective
sample mean, X̄i .

Similarly, to check whether the measurement error variance is indepen-

dent of the predictors measured without error, we plot the standard devi-

ation of Xij for each individual i against the sample mean, X̄i ; the plot for

weight is in Figure 5.3. Again, we see that there are a few outliers at the

smaller weight values, but given that there is not a strong trend overall, we

are willing to assume that the measurement error variance is independent

is of the predictors measured without error.

To check whether we can reasonably assumed that the errors follow a

normal distribution, we use a Normal Quantile-Quantile Plots for the mea-

surement errors, uij (estimated by ûij = Xij −X̄i). If the points follow closely

to the line, it is fair to assume that the data is normally distributed. As
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seen in Figure 5.4, most of the ûij values follow relatively closely to the

line, except at the tails. Recalling the outliers from the previous plots, this

deviation at the tails is somewhat expected. While we would like to have

the data follow along the line more closely, for estimation purposes, we will

continue to assume that the measurement errors are normally distributed.

5.2.2. Residual Plots. To check for nonlinearity in the regression and

lack of homogeneity of the error variances, we look at the residual plots for

each predictor in the three models we built (as seen in Figures 5.5 - 5.7)

In Figures 5.5-5.7, we look at the residual plots for the predictors of the

FFM, TEI, and EB models described in Section 3.2.1.1. Overall, we notice

that the residual plots are fairly randomly-scattered. While there appear to

be a few outliers, we are willing to assume that each of the models accu-

rately describe the relationship between their predictors and response.

Figure 5.3. Checking Model Assumption 2: Sample standard
deviation for Xij for each individual i against the sample
mean, for weight.

49



5.2.3. Order Plots. As discussed in Chapter 4, we assume that the days

of collected data are independent for each dancer. In Figures 5.8 and 5.9,

Figure 5.4. Checking Assumption 3: Normality QQ Plots for
the measurement errors, uij .

Figure 5.5. Residual plots for the chosen predictors of fat free
mass: protein and carbohydrates.
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we show the order plots to check this assumption for the protein and car-

bohydrates intake of the dancers in the Brown et al. (2017). We plot the ûij

(estimated by ûij = Xij − X̄i) for protein and carbohydrates for each dancer

across the seven days of nutrient intake. We look at participant 17 through

participant 21’s intake of protein and participant 6 through participant 10’s

intake of carbohydrates in the order plots. In both plots, we see that the

points are relatively scattered around zero for each participant, with little

to no pattern. Although not a perfect measure, the minimal pattern in the

Figure 5.6. Residual plots for the chosen predictors of total
energy intake: protein, carbohydrates, and weight.
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plots help support that we can reasonably assume that the dancer’s days of

intake are independent.

Figure 5.7. Residual plots for the chosen predictors of energy
balance: protein, carbohydrates, and weight.
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Figure 5.8. Order plot of participants 17 through 21’s protein
intake.

Figure 5.9. Order plot of participants 6 through 10’s carbo-
hydrate intake.

53



5.3. The R Code

5.3.1. Measurement Error Regression Model Function. In this section,

we share the R code used to calculate the unbiased parameter estimates

for the measurement error regression model outlined in Sections 2.1.2 and

2.2.2. As inputs, the function requires an nmx1 vector for the response, an

nmxp matrix for the predictors, and an nmx1 vector of unique identifiers.

The function is written to provide parameter estimates for a single response

and one or multiple predictors. The function returns a px1 vector for β̂1β̂1β̂1, a

single value for β̂0, and a pxp V̂ar(β̂1β̂1β̂1) matrix.

MEM_functionMult <- function(y2=NULL, x2=NULL, id2=NULL){

#Adding all inputs to a dataframe

dat2<-x2

dat2$y<-y2

dat2$id2 <- as.numeric(as.factor(id2))

#Transforming x,y to matrices to use in for loops later

x2<-as.matrix(x2)

y2<-as.matrix(y2)

#Calculating number of days, number of participants, number

of predictors, number of responses

numdaystable <- table(dat2$id2)

numdays <- numdaystable[[1]]

numpart <- length(unique(id2))

numpred <- ncol(x2)

numresp <- ncol(y2)

#Calculation for the average across the total number of days

for each individual

x_bardotmatrix<-matrix(ncol = numpred, nrow = numpart)

54



for(j in 1:numpred){

for(i in 1:length(unique(id2))){

x_bardotmatrix[i,j] <- mean(x2[as.numeric(as.factor(id2))

==i,j])

}

}

#Calculation for average of the averages above, ie overall

average per predictor

x_dotdotmatrix<-matrix(ncol = numpred, nrow = 1)

for (k in 1:numpred){

x_dotdotmatrix[,k] <- mean(x_bardotmatrix[,k])

}

#Calculation for average response for each individual

y_bardotmatrix<-matrix(ncol = numresp, nrow = numpart)

for(j in 1:numresp){

for(i in 1:length(unique(id2))){

y_bardotmatrix[i,j] <- mean(y2[as.numeric(as.factor(id2))

==i,j])

}

}

#Calculation for overall average for each response

y_dotdotmatrix<-matrix(ncol = numresp, nrow = 1)

for (k in 1:numresp){

y_dotdotmatrix[,k] <- mean(y_bardotmatrix[,k])

}

#Calculating the between person or overall variability for

each predictor

Mxx_sdxt <- matrix(nrow=numpred, ncol = numpart)

Mxx_sdx <- matrix(nrow=numpart, ncol = numpred)

Mxx_sdmatrix<- matrix(nrow = numpred, ncol = numpred)
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for (j in 1:numpred){

for (i in 1:numpart){

Mxx_sdx[i,j] <- x_bardotmatrix[i,j] - x_dotdotmatrix[,j]

Mxx_sdxt <- t(Mxx_sdx)

Mxx_sdmatrix <- Mxx_sdxt %*% Mxx_sdx

}

}

M_xxmatrix <- (1/(numpart-1))*Mxx_sdmatrix

#Calculating the between person or overall variability

between the predictor and response

Mxy_sdy <- matrix(nrow=numpart, ncol = numresp)

Mxy_sdmatrix<- matrix(nrow = numpred, ncol = numpred)

for (j in 1:ncol(Mxy_sdy)){

for (i in 1:numpart){

Mxy_sdy[i,j] <- y_bardotmatrix[i,j] - y_dotdotmatrix[,j

]

Mxx_sdxt <- t(Mxx_sdx)

Mxy_sdmatrix <- Mxx_sdxt %*% Mxy_sdy

}

}

M_xymatrix <- (1/(numpart-1))*Mxy_sdmatrix

#Calculation for the within person or day to day variability

for each predictor

siguu_i<-array(dim = c(numpred, numpred, numpart))

for (i in 1:numpart){

#Compute the variance for each individual’s predictor value

siguu_i[,,i]<-var(x2[dat2$id2 ==i,])

}

#Average across first and second dimensions

Sig_uu <- apply(siguu_i, c(1,2), mean, na.rm=T)
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#Calculation for the within person or day to day variability

for the response

sigww_i<-array(dim = c(numresp, numresp, numpart))

for (i in 1:numpart){

sigww_i[,,i]<-var(y2[dat2$id2 ==i,])

}

Sig_ww <- apply(sigww_i, c(1,2), mean, na.rm=T)

#Calculation for the within person or day to day variability

for the covariance of the predictor and reponse

sigwu_i<-array(dim=c(numpred,numresp,numpart))

for (i in 1:numpart){

sigwu_i[,,i] <- cov(y2[dat2$id2 == i], x2[dat2$id2 ==i,])

}

Sig_wu <- apply(sigwu_i, c(1,2), mean, na.rm=T)

#Calculating the matrix of beta values and beta_0

beta_matrix<- ginv(M_xxmatrix-Sig_uu)%*%(M_xymatrix-Sig_wu)

beta_0mult<- y_dotdotmatrix - (x_dotdotmatrix %*%

beta_matrix)

#Calculating the variance of error in the equation

s_vvmult<-(1/(numpart-numpred))*((t(y_bardotmatrix - rep(

beta_0mult,numpart) - (x_bardotmatrix%*%beta_matrix)))%*%

(y_bardotmatrix - rep(beta_0mult,numpart) - (

x_bardotmatrix%*%beta_matrix)))

s_rrmult <- Sig_ww - (2*(t(beta_matrix)%*%(Sig_wu))) + (t(

beta_matrix)%*%(Sig_uu)%*%(beta_matrix))

s_vvmult<-as.numeric(s_vvmult)

s_rrmult<-as.numeric(s_rrmult)

Sig_qq<-s_vvmult - s_rrmult

#Error in e is independent of x and u

Sig_eu <-0
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#Calculation for the variance of error in the response

Sig_ee <- M_yymatrix - 2*M_xymatrix%*%beta_matrix + t(

beta_matrix)%*%M_xxmatrix%*%beta_matrix + 2*Sig_eu%*%

beta_matrix - t(beta_matrix)%*%Sig_uu%*%beta_matrix

#Calculating for the variance for the beta estimates

var_betamult<-

(1/numpart)*((ginv(M_xxmatrix-Sig_uu)*s_vvmult)

+ (ginv(M_xxmatrix-Sig_uu)%*%(Sig_uu*s_vvmult+((

Sig_wu - Sig_uu%*%beta_matrix)%*%(t(Sig_wu -

Sig_uu%*%beta_matrix))))%*%ginv(M_xxmatrix-

Sig_uu))) +

(1/(numpart-numpred))*(ginv(M_xxmatrix-Sig_uu)) %*% (Sig_uu

*s_rrmult +((Sig_wu - Sig_uu%*%beta_matrix)%*%(t(Sig_wu

- Sig_uu%*%beta_matrix)))) %*%(ginv(M_xxmatrix-Sig_uu)

)

res <- list(x_bardotmatrix = x_bardotmatrix, x_dotdotmatrix

= x_dotdotmatrix, y_bardotmatrix= y_bardotmatrix,

y_dotdotmatrix = y_dotdotmatrix, M_xx = M_xxmatrix, M_xy

= M_xymatrix, Sig_uu = Sig_uu, Sig_wu = Sig_wu, Sig_ww =

Sig_ww, beta_matrix = beta_matrix, beta_0mult =

beta_0mult, s_vvmult=s_vvmult, s_rrmult= s_rrmult, Sig_qq

= Sig_qq, Sig_ee = Sig_ee, var_betamult = var_betamult,

numpart = numpart, numpred = numpred)

return(res)

}

58



5.3.2. Test Statistic, Standard Error, Confidence Interval Functions.

In this section, we share the functions we built in R that calculate the test

statistic, the standard error, and the confidence interval for each of the es-

timated coefficients in the measurement error regression model.

The test statistic function requires an px1 vector for β̂1β̂1β̂1 and an pxp

V̂ar(β̂1β̂1β̂1) matrix and returns the test statistic for each parameter estimate.

The standard error function requires an pxp V̂ar(β̂1β̂1β̂1) matrix and returns the

standard error for each parameter estimate. Additionally, the confidence

interval function requires an px1 vector for β̂1β̂1β̂1, an pxp V̂ar(β̂1β̂1β̂1) matrix, the

number of participants in the study, and the confidence level. The function

returns the confidence level for each parameter estimate.

#Calculating the t-statistic for each beta value

tstat_function<- function(betamatrix=NULL, var_betamatrix=NULL

){

diag_variance<- diag(var_betamatrix)

tstat_matrix <- matrix(nrow = nrow(betamatrix), ncol = 1)

for (i in 1:nrow(betamatrix)){

tstat_matrix[i,1] <- betamatrix[i,1]/ sqrt(diag_variance[i

])

}

return(tstat_matrix)

}

#Function calculating the standard error for each beta value

SE_function <- function(var_betamatrix = NULL){

diag_variance<- diag(var_betamatrix)

SE <-matrix(nrow = nrow(var_betamatrix), 1)

for (i in 1:nrow(var_betamatrix)){

SE[i,] <- sqrt(diag_variance[i])

}
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return(SE)

}

#Calculating the confidence interval for each beta value

CI_function<- function(betamatrix=NULL, var_betamatrix=NULL,

numpart = NULL, CIlevel = NULL){

diag_variance<- diag(var_betamatrix)

CI_matrix <- array(dim = c(2, 1, nrow = nrow(betamatrix)))

for (i in 1:nrow(betamatrix)){

left<-betamatrix[i,1]-qt(CIlevel,df=numpart-nrow(betamatrix

))*sqrt(diag_variance[i])

right<-betamatrix[i,1]+qt(CIlevel,df=numpart-nrow(

betamatrix))*sqrt(diag_variance[i])

CI<- matrix(c(left, right))

CI_matrix[,,i] <- CI

}

return(CI_matrix)

}
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