Using Visual Aids to Strengthen Student Understanding in CMSE 201
Mentored Teaching Project
Certificate in College Teaching

Emily Bolger
Mentor: Dr. Devin Silvia

March 10, 2023

Contents

1 Introduction 2
2 Modifications to CMSE 201 3
2.1 ForLoopsandIndexing e 3
2.2 Data ACCesS. 4
2.3 Array Manipulation e 4

3 Assessment Technique 5
3.1 Bi-Semesterly Survey e 6
3.2 In-Class Student Observations ittt 6
3.3 Class Assignment Observations 6

4 Analysis 6
4.1 Plotting Techniques e 6
4.2 Statistical Test oL e e e e 10
4.3 Field Notes and Course Observations 11
4.3.1 Listand For Loops o e e e 12

4.3.2 DataAnalysis 12

4.3.3 ArrayUsage e e 13

5 Limitations 14
6 Conclusions 14
7 Mentor Contribution 15

1 Introduction

In Fall 2020, I started my Teaching Assistantship with the
Computational Mathematics, Science, and Engineering
(CMSE) Department at Michigan State University teach-
ing an introductory to data analysis and computational
modeling course. During my first year, the course was
taught remotely as we were in the height of a global pan-
demic. In the virtual environment, I quickly realized
the challenges of trying to explain code logic to intro-
ductory students without ease of drawing or demonstra-
tion. Further, it was not only challenging as an educa-
tor to make these visualizations, it hindered the students’
ability to deeply understand the tools we were teaching
them. While there is often a disconnect between the syn-
tax of the code and the conceptual understanding of the
code for introductory students, this was only exacerbated
by the virtual environment.

The disconnect I noticed in students was most appar-
ent in coding tools such as lists, data frames, and two-
dimensional arrays. Students often had trouble visual-
izing the structure of these objects and as a result, strug-
gled with learning how to retrieve information from them
using indexing. In some instances, instructors use analo-
gies to describe the composition of these objects. How-
ever, it would also be valuable for students to have vi-
sual representations that they can reference at any time.
It would help novice students grasp initial concepts that
persist through various coding tools and strengthen their
ability to apply algorithms to real-life problems [

)))]. Further, we
know that these visualizations are most beneficial when
they require active involvement from the students [

) I

Beyond deciphering the structure of the object, the flow
of a code piece or full algorithm is challenging for stu-
dents to breakdown. This is occassionally referred to as
tracing, and it was shown by [] to be
positively related to effectively writing code. The authors
highlight challenges that students faced explaining code
chunks specifically related to loops and arrays. Addition-
ally, [| analyzed how students approach
tasks that require them to think about the direction of
incrementation in their loop. In general, students de-

faulted to using loops with forward incrementation, even
when it was not optimal to solve the task. They claim that
this is a result of students being exposed more frequently
to forward loops as well as the students starting to code
before planning out their solution. Similar studies ana-
lyze how students think about indexing as it relates to
using for loops [, ,

,) ,]. Specifically,

[| noticed that many students defaulted to using
a loop by value approach when a loop by index was most
appropriate. Further, when students loop by index, they
struggle with setting the upper bound of the loop and of-
ten attempt to access elements beyond the length of the
list | ,]. Loops that are created to access
elements in a data frame or a two-dimensional array are
very similar to those created for elements of a list. Thus,
student misunderstandings in loops with lists are likely
to persist with more complex coding objects.

In my experience, when presented with coding problem,
many students were able to recognize which coding tools
would be useful in solving the problem, but did not un-
derstand the tool at a deep enough level to know how
to update the code to match the specific situation. This
inability to transfer knowledge to new applications has
been studied by computationalists and is sometimes re-
ferred to as inert knowledge | , , , ,

)]. In fact, after conducting think
aloud interviews with students in their first or second
year of coding, [] noted that while
students use a range of strategies for solving computa-
tional problems, they often used pattern recognition and
code syntax identification.

Related to this, students need practice articulating their
code implementations and algorithms. This skill strength-
ens the students’ understanding of the code, while also
encouraging them to practice justifying their work to an-
other audience, which is a practice that is useful beyond
the classroom walls | , ,

,]. While some students have this ex-
perience by working in groups on coding projects, it is
crucial that they practice this more consistently through
written tasks in course work, guided discussion with peers,
and conversations with instructors. The ability to com-
municate and collaborate with a team are highly requested

skills in academia and industry [, ,
) J.

Thus, in this work, we integrate visual aids in course ma-
terials to help students in their understanding of coding
practices like lists, data frames, and two-dimensional ar-
rays, particularly in relation to indexing with those tools.
The goal of the visual aids is to help students conceptu-
alize the structure of the object as well as walk through
examples that show information retrieval from these ob-
jects. We also embed guided questions for students to
practice explaining their coding choices and implemen-
tations. Specifically, we are looking to study how stu-
dents think about and explain code using descriptive lan-
guage to their instructors, fellow coding classmates, and
non-coders, particularly when thinking about for loops,
data access, and array manipulation. We want to ana-
lyze whether this practice of visualization and explana-
tion deepens student understanding of the course con-
tent.

As we will discuss, many students did not partake in the
tasks that required them to share their understanding
and explain their work, thus we focus on student recep-
tion to the material, and note places for improvement in
the materials to encourage students to have these experi-
ences.

2 Modifications to CMSE 201

I explored my research question within the context of In-
troduction to Computational Modeling and Data Anal-
ysis I in the Computational Mathematics, Science, and
Engineering Department (CMSE 201) | ,]
The course is targeted towards students in all disciplines
and requires no prior background in coding. The course
seeks to provide students with basic data analysis and
computational modeling skills that they can use in their
own fields throughout their career. Students learn the
basics of Python as well as many libraries in Python that
focus on data visualization, data analysis, and modeling
techniques.

The course is taught in a flipped classroom style, like
other recently developed computational courses [

7 ’ ’ J 7

,]. Students complete pre-class as-
signments before attending class that introduce the cur-
rent topic through videos and examples. In class, stu-
dents work in groups to complete a guided problem set
about the same topic. In addition, students individu-
ally complete bi-weekly homework assignments that are
graded by the teaching assistants based on a rubric pro-
vided by the instructor that created the assignment. In
addition to the homework assignments, students com-
plete an end of semester project on a topic of their choice
using tools from the course. Finally, the course has a mid-
term exam and final exam.

There are typically 6-8 sections of this course per semester
with about 40-60 students in each section. Thus, making

large scale changes to the course materials is very chal-

lenging. For this reason, the changes that I implemented

were modifications to existing course content.

By focusing on for loops, data access, and array manipu-
lation, I modified 10 assignments for CMSE 201, at vary-
ing levels. For each section, I list the modifications that
were made. In general, the changes included aids for the
students to help visualize different pieces of code and
conceptual questions aimed to deepen student understand-
ing of coding tools as well as give them practice explain-
ing code pieces to others.

Full course assignments that I modified can be seen in
the portfolio.

2.1 For Loops and Indexing

Early in a first coding course, students are introduced
to for loops. These are frequently used in coding algo-
rithms to iterate through a set of objects. However, stu-
dents are often struggle with understanding the use of
indices and how it relates to object selection from a list
in the for loop. To aid this development, I created gifs
to walk through the steps of a for loop. It highlights the
item in the list that is being selected, the associated index
of that item, and the output of the loop (see Figure 1).

To further clarify the use of indices in for loops (as seen
on the right of the Figure 1), we contrast with a syntac-
tically different for loop, typically referred to as for loop
by value (on the left side). By putting the different types

Loop by Value Loop by Index

subject_list = [‘math’, ‘computer science’,
*chemistry’, ‘English’, ‘history” |

subject_list = [‘math’, ‘computer science’
‘chemistry’, ‘English’, *history”]

for item in subject_list:
print(item)

for i in range(len(subject_list)):
print(i, subject_list[i])

Step 1: ‘item’ = ‘math’ Step1: "= "0’

‘subject_list[i)’ = ‘math’

Figure 1: Snapshot of gif used in a pre-class assignment
of CMSE 201 to help reinforce the concept of indexing
when using for loops.

of for loops side-by-side, we seek to highlight the simi-
larities in the output, but difference in syntax.

In the same pre-class assignment as well as the in-class
assignment, students are given application problems that
require them to use a for loop. In both assignments,
student are tasked with first explaining the information
they need to complete their task and how they will use
that information to solve the given problem. In addition,
students are asked to explain the idea of an index to a
non-coder. These components of the assignment give the
instructors further insight to the student’s understand-
ing of for loops rather than simply looking at their code.
It also encourages the students to think more deeply about
the purpose of the coding tool instead of mapping the
syntax to a type of problem.

2.2 Data Access

The challenge that students encounter with indices in for
loops often permeates in using indices to retrieve infor-
mation from a data frame. To help counteract this, we
created a second set of gifs that show a task retrieving
information from a data frame, the code used to com-
plete that task, and the information in a data frame that
the piece of code retreives (see Figure 2). The visual aids
show examples of different data retrieval techniques used
in the Pandas library from Python.

In addition to the gifs, students were asked to complete
various data retreival tasks. For a given question, they
were to describe the information they needed to com-
plete the task (e.g. a column, a row, some combination of

Task: Accessing a row of information by its index labeliname
Code: Example_Dataframe.loc['8]

Col_1 Col 2 Col 3 Col 4

A 0 1 2 3
B 4 5 6 7
(o] 8 9 10 11
D 12 13 14 15

Task: Accessing a row of information by its indices/position
Code: Example_Dataframe.iloc(1]

Col_1 Col 2 Col 3 Col 4

A 0 1 2 3
B 4 5 6 7
C 8 9 10 1
D 12 13 14 15

Figure 2: Snapshot of gif used in a pre-class assignment
of CMSE 201 to help reinforce the concept of indexing to
access pieces of a data frame.

both), the available coding options to complete the task,
and the code they would use to complete the task. Break-
ing down the task on this level of detail encourages the
students to think more criticallly about the information
they wanted to retrieve and the coding tools available to
them. Similar to the questions in the for loop section, we
wanted students to understand the coding techniques,
rather than simply memorize a mapping between a spe-
cific syntax and a specific problem.

Similar to the critical questions presented in the pre-class
assignment, students were tasked with questions in the
following two in-class assignments that guided them to-
wards thinking about data retrieval and referred them
back to the gifs in the pre-class assignment.

2.3 Array Manipulation

Finally, we used visualizations to represent indexing in
two-dimensional NumPy arrays. In my experience, the
challenges that students struggle with when using arrays
are related to both indexing in for loops and in data frames.
In Python, arrays can be thought as a list comprised of
lists or a mathematical matrix. To iterate through all the

elements in the array, one uses nested for loops - one that
iterates through the lists and one that iterates through
the objects in the selected list. Thus, if students strug-
gle with indexing in lists, it affects their ability to extend
it to two-dimensional arrays. Further, in order to access
elements of an array, we use similar slicing techniques
that can be used for data frames. Once again, if slicing in
data frames is difficult for students it usually continues
in arrays.

for i in range(board.shape[0]):
for j in range(board.shape[1]):
O =1 2

(0,0) 1) ©02)

2 0 1

(1,0) Ly (1,2)
i=1

(20) 21 22)
i=2

Figure 3: Snapshot of gif used in a pre-class assignment
of CMSE 201 to highlight 2-dimensional indexing.

=0 | j=1 2 B
(0,00 0,1) 0,2) (0,3)
i=0
o 0 255 255
1,0 (1,1 1,2 (1,3)
i=1
0 255 255 0
2,0 2,1 2,2) 2,3)
i=2
255 255 1] 255
3,0) (3,1) 3,2) 3,3)
i=3
0 0 255 255

getNeighborValues(, j, board)
return neighbor_values

(=[o,01)

Figure 4: Snapshot of gif used in a pre-class assignment
of CMSE 201 to highlight 2-dimensional indexing and
the indices of neighboring elements

Keeping all this in mind, we created a couple visualiza-
tions (Figures 3-4). Each gif highlights a few different as-
pects of arrays. Figure 3 shows the code typically used
for iterating through a two-dimensional array and ac-

cessing each element in the array. The numbers in the
top left corner of each box represent the row and col-
umn indices for that element, which are further empha-
sized through row and column labels. For example, in
the top left box, the numbers are (0, 0) emphasizing that
both i = j = 0 in the first iteration of the loop. The yel-
low box highlights which element is selected based on
the values of i and j. In addition to which element they
are selecting, we emphasize the difference between the
indices and the value at the index - similar to the for loop
visualization. The element at indices i = j = 0is 2. It is
colored red as a reminder that 2 represents a fire, as this
gif comes from an assignment where students are mod-
eling the movement of a fire through a forest.

In Figure 4, we show similar information. For a task
in the in-class assignment, students needed to design a
function that returns the values of the neighbors for a
given element. This gif was created to help them visu-
alize what those neighbors are for different elements in
the array, the indices of those neighbors, and the values
of those neighbors. As the gif evolves, students see the
neighbors (green boxes) of a given element (yellow box).

Following suit to the for loops and data frames, we task
students with explaining their solution to problems re-
lated to array manipulation. They are asked to explain
what information they were presented with, what infor-
mation they needed to complete the task, how they re-
trieved that information, and how they used that infor-
mation for solving the larger problem. We seek to help
students more critically think about the coding tools they
are employing, while additionally giving them practice
seeing where their smaller tasks fit into the larger solu-
tion.

3 Assessment Technique

To assess the modifications implemented in the CMSE
201 curriculum, we used three methods: bi-semesterly
survey, in-class student observations, and class assign-
ment observations.

3.1 Bi-Semesterly Survey

We distributed a bi-semesterly survey to the students to
gauge self-reported student confidence in completing var-
ious tasks related to critical concepts in CMSE 201. It
also was used as a self-check study tool for the mid-term
and final exams, and thus, included more topics than this
project aimed to study.

Using a Likert Scale (1: Not Confident — 5: Extremely
Confident), we gather information on six topics: Lists
and Indexing, For Loops, Functions, Plotting, Data Re-
treival and Usage, and Array Retreival and Usage. We
assess student confidence in completing tasks related to
these topics in course assignments as well as outside of
the classroom. Additionally, they report their confidence
in explaining these topics to fellow classmates and non-
coders.

The survey can be viewed here. Only students that com-
pleted both surveys were included Section 4.

3.2 In-Class Student Observations

For each in-class assignment that was modified, I doc-
umented field notes about student reception to the ma-
terial as they completed it in class |

,]. This included student group discussions
around the material, individual student progress based
on curriculum changes, and conversations that were in-
stigated through these changes. For each piece of the as-
signment that I changed, I noted how it seemed to affect
student understanding of the material as well as where
it could have been improved. The notes reference groups
of students for privacy reasons.

3.3 Class Assignment Observations

In addition to the observations on the in-class assign-
ments, I also took detailed notes on student responses
to pre-class and homework assignments. Again, I noted
specific questions related to student reception, rate of

completion, level of detail, and uncompleted components.

4 Analysis

To interpret the results from the bi-semesterly survey,
we use lollipop and parallel plots as well as conducted
a Wilcoxon Signed Rank Test. We compare the student
reported results in the plots and the statistical test with
the coursework observations.

4.1 Plotting Techniques

To show the change in the student’s responses before the
mid-term and before the final, we chose lollipop and par-
allel plots. In Figures 5-10, we show the student survey
responses regarding confidence describing a list or in-
dex, for loop, and data analysis task to a classmate or
non-coder. We do not have information on self-reported
confidence regarding arrays before the mid-term, since
students do not learn two-dimensional arrays until the
last third of the semester.

In the Lollipop Plots, for each student we compare their
mid-term self-assessment score with their final self- as-
sessment score. The distance of the line between the two
points indicates the change in student ranking. Looking
at Figure 5, we see many students start and end with a
higher confidence in explaining the concept of an index
to a classmate than a list to a noncoder. Of course, these
are not direct analogs, but interestingly about one third
of the students indicated at both points in the semester
that they could very confidently explain an index to a
classmate.

Further, most student showed in increase in confidence
by 1-2 levels. However, about three students in the class
indicated an increase in their confidence of explaining
indices by 3. Pinpointing when this shift in confidence
occurred during the semester would be interesting as this
same jump does not appear in the bottom plot of Fig-
ure 5. In both plots, we notice a few students who de-
creased their confidence level as the semester progressed.
These cases are particularly intriguing and may indicate
that students overestimated their confidence in under-
standing early in the semester.

We look at the same type of plots, in Figure 6, regard-
ing for loops. In this set, we are asking students to state

https://forms.gle/NLD8dMQqGRJn5BAdA

Students by index

Students by index

Comparison of the Confidence Before and After Midterm

NN

=
VNNOROUVHORO
P

® Before Midterm
After Midterm

1 2
Confidence of Describing an Index to a Classmate

Comparison of the Confidence Before and After Midterm

® Before Midterm
After Midterm

Confidence of Explaining When to Use a List to a Noncoder

Figure 5: Student survey responses to explaining lists
and indexing to coders and non-coders.

Students by index

Students by index

Comparison of the Confidence Before and After Midterm

@ Before Midterm
After Midterm

Yvyv

i

Confidence of Describing an For Loop to a Classmate

Comparison of the Confidence Before and After Midterm

@ Before Midterm L
After Midterm

Confidence of Describing an For Loop to a Noncoder

Figure 6: Student survey responses to explaining for
loops to coders and non-coders.

Comparison of the Confidence Before and After Midterm

4 @ Before Midterm
After Midterm

Students by index
N RREE ENEE e ENE N
CHENWOONOOUNREWOFNRENWOO RO
9900909090000

1 2 3 4 5
Confidence of Describing an Data Analysis Task to a Classmate

Comparison of the Confidence Before and After Midterm

4 @ Before Midterm
After Midterm

-

N

NwnO B oRNO
L
09000

Students by index
=
=W
9999900000000 009

3 4 5
Confidence of Describing an Data Analysis Task to a Noncoder

[}
=4 999

Figure 7: Student survey responses to explaining data to
coders and non-coders.

their confidence in describing a for loop to a classmate
and a for loop to a noncoder. We notice many similari-
ties between the two plots across number of students in
each confidence level and changes in confidence levels,
which are all increasing. The most striking difference
between them is the number of students who were Ex-
tremely Confident (5) about their ability to describe a for
loop to a classmate both before and after the midterm,
but did not have that same confidence when asked about
explaining it to a non-coder.

Finally, we compare student confidence regarding data
analysis tasks in Figure 7. While we see a few students
who confidence decreases throughout the semester, most
students shown an increase in confidence. Further, most
of those increased were very large, particularly for com-
municating with a noncoder. This makes sense as stu-
dents start to learn about data analysis tasks shortly be-
fore the midterm.

In Figures 8-10, we present the same information in a
parallel plot. In this format, we can more easily see the
number of level changes that occur. Again, each line rep-
resents the change in confidence level. More specifically,
a blue line indicates an increase in confidence, a black
line indicates no change in confidence, and a purple line
indicates a decrease in confidence. The width of the line
indicates how many students follow that path. The size
of the nodes indicate the number of responses for that
confidence level.

Looking at Figure 8, the number of students whose con-
fidence level remained at a 5 for explaining an index to a
classmate compared to a list to a noncoder is clear. Addi-
tionally, we see many students report an increase in con-
fidence regarding explaining lists to a noncoder, particu-
larly from levels 4 to 5.

In Figure 9, we notice there are many more students who
remain at the same confidence level when describing for
loops to classmates and noncoders, which for some stu-
dents is at a 3. In both plots, we again notice many stu-
dents shifting from 4 to 5. Further, we see a similar
branching from level 2 to levels 3, 4, and 5.

The similarities between the classmate and non-coder con-
fidence levels continue in Figure 10. With the exception
of a few lines, the plots are nearly identical in the changes

Shifts in Confidence Before and After Midterm

Describing an Index to a Classmate

1-
Frequency of Shifts Confidence Level ”“’""e""' "1990"595
-1 = Increasing .5
- 4 == Constant
L — Decreasing ‘ ?4
Before Midterm After Midterm

Shifts in Confidence Before and After Midterm

Explaining When to Use a List to a Noncoder

1- Fequencyorshits Condencetever] Nomberof Reponses
- — ncreasing o
- — Constant .
. s — ecreasing o
Before Midterm After Midterm

Figure 8: Student survey responses to
and indexing to coders and non-coders.

Shifts in Confidence Before and After Midterm

Describing a For Loop to a Classmate

5.
4-
3.
2-
1- Frequency of Shifts Confidence Level Number of ieponses
-0 = increasing
< = Constant o
.7 — Decreasing Y
Before Midterm After Midterm
Shifts in Confidence Before and After Midterm
Describing a For Loop to a Noncoder
5.
4-
3-
2
1-
Frequency of Shifts Confidence Level Number of Reponses
-1 — increasing -
-4 — Constant P
' — Decreasing 4
Before Midterm After Midterm

explaining lists Figure 9: Student survey responses to
loops to coders and non-coders.

explaining for

that are present and the frequency in those changes.

Generally speaking, student confidence increased over

the semester for explanatory tasks with fellow classmates

and non-coders. However, many students indicated a

Shifts in Confidence Before and After Midterm higher confidence in describing these concepts to class-

Describing a Data Analyss Tas to 2 Classmate mates over non-coders. Further, that confidence level in-

creased at the most frequency particularly for the list and

for loop tasks. It would be interesting to interview stu-

dents about how they view these two populations differ-

ently. For example, how would explaining a coding con-

cept to a noncoder make them change their approach, if

at all? What would those changes be? On the same token,

do the students’ increase in confidence relate to increase
in understanding of the material?

Finally, we briefly discuss student survey responses to
questions regarding arrays. Students learned two- di-
mensional NumPy arrays after the mid-term exam and
v i thus, they were only asked about their confidence re-

% garding using them before the final. Immediately, we
notice that most of the responses are a 3 or higher. The
category with the largest about of responses below a 3 are
explaining an array to a non-coder.

Frequency of Shifts Confidence Level
-1

. a
[
12

e
Before Midterm After Midterm
Shifts in Confidence Before and After Midterm

Describing a Data Analysis Task to a Noncoder

4.2 Statistical Test

To statistically analyze the differences in a single stu-
dents’ response, we used a Wilcoxon Signed Rank Test.
The non-parametric test determines if the distribution of
paired differences is symmetric around 0. This test is of-
ten used in place of a paired sample t-test when the data
2 is ordinal, interval, or ratio scale as we have with the Lik-
ert scale responses. For this test, the differences need to
be approximately symmetric, which we found to be true.

To calculate the test statistic, we assign ranks, R;, to the
: 3 absolute differences, |D;|, of the student responses, i =
Before Midterm After Midterm 1,---,n. We omit any differences of 0 and update the

number of samples, n’. For differences with the same

Figure 10: Student survey responses to explaining data value, we use an average ranking method and subsequently,

to coders and non-coders. reduce the standard error by % for each group of ¢ tied

ranks. The test statistic, W, is the sum of the ranks of the
initial positive differences:

10

Frequency of Responses Frequency of Responses Frequency of Responses Frequency of Responses

Frequency of Responses

Survey Responses for Arrays

| woy K
i=1
For a large enough sample, W ~ N(uw, ow) for py =
: n’(n4’+1) and oy = [n’(n’+12)£2n’+1).
. . We use scipy’s implementation to calculate the p-values,
' ® explaining When to Use an Artay to 3 Noncodar ’ which are presented in the following table.
*] Task To Whom | p-value
°] Index Classmate | 0.0049
°] List Non-Coder | 0.0017
a For Loop Classmate | 0.00048
2] For Loop Non-Coder | 0.00026
.. . . Data Analysis | Classmate | 0.00044
! ® Describing an Aray to a Classmate ’ Data Analysis | Non-Coder | 0.00013
ol We notice that all the values are extremely small, indicat-
ing that the paired differences are statistically different
] from 0. There is enough evidence to claim that the stu-
4 dents confidence levels were different between the two
2 points of data collection for each of the survey questions
. [[considered. However, we note a few things. First, our

total number of participants is 23, which is a small sam-
ple to start with. Additionally, for some of the questions,

10 there are a fair amount of users who did not report any

8 changes to their confidence level. For example, in the

ol top graph of Figure 7, there are 7 users who remained at

N I I a 5. These get removed from the sample. Looking at the
2- 3 4 5

Describing an Array to a Noncoder

same graph, there are many users with the same increase
in confidence. There are 6 users who move from a 4 to
a 5. While we use the average ranking method for these
users and adjust the variance accordingly, the amount of

ties affects the test statistic and hence the p-value calcu-
8 lation.
6
“1 4.3 Field Notes and Course Observations
2]
Nl . For the sake of brevity, we choose a few noteworthy ob-
: ’ : ° servations for each of the major changes that were made

to highlight the general undertone of the class and their
Figure 11: Student Responses for NumPy Array. reception to the changes in the material.

Completing a Task with an Array

Qutside of Class using an Array

11

4.3.1 List and For Loops

With the changes that were implemented, we wanted to
deepen student understanding of indexing as it relates
to lists and for loops as well as strengthen their ability to
explain these concepts to others. The student responses
to the pre-class assignments and their conversations in
class indicate they grasp the concept of an index as it re-
lates to retreiving a single value from a list, but they do
not follow the extension of this process in for loops. For
example, their knowledge of using ‘list[0] to obtain the
first element in the list is clear. Further, when asked to
explain the idea of indexing to a non-coder, many stu-
dents were able to use descriptive langauge referring to
the index as a label or location of an item in the list. Some
students even used analogies to aid their thoughts. How-
ever, translating this idea to use indexing in a for loop
with a list is not as clear.

After using the gifs to demonstrate the differences be-
tween looping by item and looping by index, we asked
students to describe any differences they saw as well as
implement the two types for a given task. Most students
were not able to articulate any major differences between
the two types and had trouble implementing two dif-
ferent versions of the for loop. While the two types ar-
guably accomplish the same broad task, there are differ-
ences syntactically and in usage. This is the crux of a
larger problem. Students assume the two different styles
are identical as they return the same information, so they
default to the for loop by item as it contains less syn-
tax to understand. This is further exacerbated by built-in
Python functions such as enumerate that allow them to
access the index and item together in a loop by item for-
mat. While it may be challenging for students to articu-
late why one for loop might be used in a certain situation
over the other when they initially learn it, there are still
differences in the code syntax that should be apparent to
students.

Even with this in mind, I would say that the inclusion of
the gifs and the question were successful. While it is not
completely apparent in their responses in the pre-class
assignment, it did result in many conversations with stu-
dents about the topic. By asking them if there was a dif-
ference, it indicated to them that there should be, even

if they did not discern the difference yet. This reaction
makes me curious about their responses to the survey.
We did not specify the type of for loop in the survey.
Since the students have a strong grasp on the for loop
by item, I wonder if this is the reasoning for the high
amount of confidence we saw from many of the students.
It would be interesting to write this question more clearly
and analyze if there are any differences between the stu-
dent responses for the different types of for loops.

We also asked them to explain their thought process in
completing a question that required the use of multiple
for loops, but most students skipped these types of ques-
tions. This continued throughout the semester. When
they did complete them, they often used jargon specific
to coding and avoided deeper explanations.

While students still struggle with indexing related to lists
and for loops as in previous semesters, the modifications
to the course materials challenged them to think about
these concepts in ways they wouldn’t have otherwise. By
asking them about the differences in the for loops, they
were pointed towards noticing that a difference does ex-
ist, even if they weren’t quite sure what it was yet. By
asking them to explain the idea of an index, it encour-
aged them to think about how the seemingly small idea
contributes to many larger coding tools. With that said, I
think a bit more work could be done to increase student
thinking in these assignments. For example, we need
to create more situations where students are required to
loop by index as well as give them practice explaining
these implementations to others. Through doing so, and
talking to instructors along the way;, it will challenge their
own understanding.

4.3.2 Data Analysis

The changes in the data analysis course materials ap-
peared to strengthen student undestanding of retrieving
information from a data frame using indices, but did not
aid in their ability to explain their process, mostly due to
lack of completion.

In the pre-class assignment, when students were asked
to practice their skills with indexing a data frame, nearly
all students were able to complete the task with success,
but did not explain what information they were trying to

12

access or why they used the tools they chose. While there
is chance students did not complete these questions due
to lack of comprehension, it is more likely that they did
not complete them to save time, especially considering
they completed the coding tasks with success.

This type of success continued throughout the in class
assignments. It was refreshing to see students refer to
the visual aids in class to discuss their ideas with fellow
classmates and instructors. Further, these tools seemed
to give students a better visual of data frames in gen-
eral. Compared to previous semesters, there was a shift
in the types of questions I received related to data re-
trieval tasks. Student questions were more targeted. They
were asking about specific syntax to complete a certain
task, rather than broadly asking about how to start think-
ing about completing the task. It gave students the frame-
work for understanding the process they needed to take,
while only struggling slightly with the code to complete
that task.

Unfortunately, the modifications throughout the pre-class
and in-class assignments to guide students to explain their
thinking were not met with success. This continued in

the homework as well as for similar types of questions

regarding pseudocode (writing the main ideas of an al-

gorithm without specific coding language syntax) and re-

sults from data analysis. Students often struggled to ex-

plain their ideas in the level of detail that is needed to

share their ideas with someone who is not familiar with

the jargon. While this is not a simple feat, students do

not take advantage of the chances in the pre-class and

in-class assignments, and thus struggle to perform well

on this style of question on homework.

Overall, the modifications that were made seemed to in-
crease student understanding of tools available to them
to access information from a data frame as well as pro-
vide them with visuals to refer back to at any time. How-
ever, | have learned that asking students to write down
their thinking process in an assignment that does not
get marked for accuracy is ineffective in getting students
to explore this practice. As instructors, it is necessary
to create these experiences verbally in class, so students
learn the value of this skill and continue to develop it
through various written assignments.

4.3.3 Array Usage

Since two-dimensional arrays are deeply related to both
lists and data frames, specifically obtaining information
from them using indexing, it is helpful to study student
understanding of arrays to gather further information on
their perception of list and data frames.

When prompted, students were able to describe how two-
dimensional arrays were related to things like matrices,
data frames, and nested lists with a few additionally pro-
viding great analogies. In general, students were more
successful in noticing the similarities of the row repre-
sentations between data frames and two-dimensional ar-
rays rather than the column representation. About half
of the students accurately described that the general frame-
work was the same, but the syntax was slightly different.
In addition, they recognized the similarities in informa-
tion retrievel from both types of objects, specifically the
similarities of slicing and iloc ! /loc 2.

Further, with the aid of the visual representations, the
students were able to distingiush between the index and
the value of an object in a two-dimensional array more
clearly than in previous semesters and more clearly than
they did with lists earlier in the semester. This was cru-
cial to understanding a few of the in-class assignments.
Students needed to access the neighbors of a given object
and with the visuals, students seem to have a better grasp
of what the neighbors of a cell were, which they showed
by actively discussing with their groupmates. While the
students were still challenged with obtaining the neigh-
boring values, many more students more clearly under-
stood the task and once again had the tools to ask more
targeted questions of the instructors. This is a large im-
provement from previous semesters where students strug-
gled to grasp what they were trying to acheive. As they
worked through the problem, they were able to more
clearly conceptualize the difference between the value
and the index of the array element.

Again, students were asked to explain their thinking through

the process of constructing the forest fire. This semester,

Ipandas iloc documentation: https://pandas.pydata.org/
docs/reference/api/pandas.DataFrame.iloc.html

2Pandas loc documentation: https://pandas.pydata.org/docs/
reference/api/pandas.DataFrame.loc.html

13

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html

the assignment was spread over two class periods. At the
end of day one, students were asked to articulate the next
stages in their progress which they were able to do with
success. Many were not sure what their ideas would look
like in code, or at least did not write that, but they were
able to describe what they had done in the first day and
how that was going to be used in the second day. How-
ever, at the end of the second day, students were asked
to explain the entire process to a non-coder and this was
not as successful. Many students were broad in their ex-
planations and used language specific to the code them
implemented.

As with the previous sections, the gifs gave students the
visualizations they needed to conceptualize various cod-
ing tasks. With the visuals, they were able to discuss po-
tential solutions with their groupmates and the instruc-
tors in a more detailed manner, rather than struggling to
comprehend the problem statement.

5 Limitations

We discuss a few limitations relating to this work and the
related conclusions. The biggest limitation we faced was
lack of student response rates. Many of the exploratory
and justification questions that required student expla-
nations beyond code were simply ignored in the Pre-Class
and In-Class assignments. This made it challenging to
fully assess if the students’ comprehension of the mate-
rial had increased with the inclusion of the visuals and
guided questions. We faced a similar issue with the sur-
vey. Since we only used the responses of students who
had completed the survey at both points of the semester,
we had a sample size of 23 out of 41 students that com-
pleted the class. The small sample size, in both instances,
made it very challenging to gauge the changes in student
understanding from semester to semester, as well as con-
duct formal statistical tests about their confidence level
differences within the semester. While we are able to
make some claims about the students in this class, it is
challenging to broaden these claims.

Related to the previous limition, in the interest of receiv-
ing more student responses to the survey, we simplified
the amount of questions as well as the complexity of the

questions. Initially, there were more open-ended ques-
tions related to completing a computational task and ex-
plaining the process of doing the task. We transitioned to
strictly Likert scale questions, which was still helpful in
gathering information on student confidence levels, but
did not allow us to be as precise in our questions.

Additionally, the course was taught in a primarly in-person
format with the option to join virtually. The other semesters
that I taught the course were completely virtual. With
this in mind, the results of our study might be impacted
by the known differences of learning content online as
opposed to in the classroom. Further, it might have af-
fected my own perception of student understanding as it
was easier to decipher group dynamics and general un-
derstanding in the classroom rather than through video
call.

6 Conclusions

In this section, we highlight our main findings as well as
mention some changes we would implement if this study
were to continue.

Based on the survey as well as the completion of course
assignments, students seem to have a grasp on indices as
it relates to lists. Many are able to use descriptive lan-
gauge and create analogies for indices. However, there is
a disconnect in for loops. Students report a moderate to
high confidence to explaining for loops, especially to fel-
low classmates, but many students struggled with using
indexing in for loops and differentiating between the two
types. We note a few possible reasons for this difference.
(1) Students may not be considering indices as a compo-
nent of for loops in the survey response, especially since
it is not stated explictly. (2) Students may feel comfort-
able with looping by value and thus, overestimate their
confidence with all for loops. (3) This survey was given
many weeks after students first learned for loops, and
thus, they might understand more than they did at the
time of completing the course assignments.

Secondly, in contrast to the reported low confidence in
data analysis tasks, students were in fact more resource-
ful in class and asked more targeted questions regarding
these types of tasks than in previous semesters. While

14

the larger data analysis questions still challenged stu-
dents, they were stronger in smaller components of these
larger tasks, such as data retrieval. Again, it would be
interesting to analyze what students considered a data
analysis task for the survey question and how heavily
they considered indexing in relation to the task.

Embedding multiple visualizations throughout the class
seemed to increase student understanding throughout the
semester. The connections between arrays, lists, and data
frames seemed more clear to students, specifically in re-
lation to information retreival. Additionally, each of the
visualizations gave students a conceptual representation
of the code tool that they could continuously refer back
at any time.

With this in mind, I do think these connections could be
made more clear throughout the course material. I think
we can place more emphasize on indexing in relation to
for loops and use this description continuously with data
frames and two-dimensional arrays. The repeated use of
the visualizations through explanations with teaching as-
sistants and faculty instructors can help stregthen these
ideas in students. While some of the instructional staff
used these kinds of visualizations previously, embedding
them directly into the course materials ensures that all
students have access to them and can use them to ask
further questions, deepen their understanding, and com-
municate with their classmates.

Through completing the analysis on this project, I found
myself having more questions that I did answers. If I
were to use the survey in course again, I would adjust
the wording of the questions to account for the specificity
that I wished to study. Further, it would have been more
beneficial to release this survey multiple times through-
out the semester. By retrieving student responses ev-
ery few weeks, their initial answers would be closer to
when they first learned the coding tool and their changes
in confidence levels would be easier to associate with a
pointed time in the semester.

Related to the previous statement, due to the lack of re-
sponses, I struggled to capture how students would ex-

plain their thinking to another student or non-coder. Many

did not take the time to complete these explanatory tasks,
and thus, made it challenging for me to quantify their

confidence levels. It might be fruitful to have a verbal
component to the explanatory questions within the in-
class assignments. For example, we could request that
they chat with their groupmates, another group, and/or
an instructor. Again, while some instructors do this, for-
malizing and adding structure to it in the in-class assign-
ment might help it happen in all classrooms.

All in all, the modifications that were made to the CMSE
201 curriculum with the visual aids and guided concep-
tual questions seemed to strengthen student knowledge
in comparison to previous semesters. I received much
positive feedback from other instructors in the course
based on my changes, and noticed an increase in clarity
in student understanding. I am looking forward to ask-
ing these sorts of questions in future courses that I teach
and gathering information on student perception, so that
I can improve my course materials.

7 Mentor Contribution

I want to note that my mentor, Dr. Devin Silvia, was sup-
portive of my research question and plans as well as pro-
vided many ideas for data analysis and visualization. He
provided feedback on the changes that I made to the class
assignments. Additionally, he shared many resources for
visualizing the survey data that I collected as I did not
have experience creating plots for this type of data be-
fore. Finally, he provided great feedback on this final
written report. I am very thankful for his thoughts and
support during this work.

15

References

Leema K Berland and Katherine L McNeill. For whom is
argument and explanation a necessary distinction? a

response to osborne and patterson. Science Education,
96(5):808-813, 2012.

Yuliya Cherenkova, Daniel Zingaro, and Andrew Pe-
tersen. Identifying challenging cs1 concepts in a large
problem dataset. In Proceedings of the 45th ACM tech-
nical symposium on Computer science education, pages
695-700, 2014.

National Research Council. A framework for K-12 science
education: Practices, crosscutting concepts, and core ideas.
National Academies Press, 2012.

K Patricia Cross. Classroom Assessment Techniques. A
Handbook for College Teachers. Jossey-Bass, Incorpo-
rated, 1993.

Simon P Davies. Expertise and display based strategies in
computer programming. PEOPLE AND COMPUTERS,
pages 411-411, 1993.

Sue Fitzgerald, Beth Simon, and Lynda Thomas. Strate-
gies that students use to trace code: an analysis based
in grounded theory. In Proceedings of the first interna-
tional workshop on Computing education research, pages
69-80, 2005.

Michail N Giannakos, John Krogstie, and Nikos Chriso-
choides. Reviewing the flipped classroom research: re-
flections for computer science education. In Proceed-
ings of the computer science education research confer-
ence, pages 23-29, 2014.

Di Gong, Harrison H Yang, and Jin Cai. Exploring the
key influencing factors on college students’ compu-
tational thinking skills through flipped-classroom in-
struction. International Journal of Educational Technol-
ogy in Higher Education, 17(1):1-13, 2020.

Marwah Ahmed Halwani, S Yasaman Amirkiaee,
Nicholas Evangelopoulos, and Victor Prybutok. Job
qualifications study for data science and big data pro-
fessions. Information Technology & People, 2021.

Paul W Irving, Michael] Obsniuk, and Marcos D Ca-
ballero. P3: a practice focused learning environment.
European Journal of Physics, 38(5):055701, 2017.

Cruz Izu, Cheryl Pope, and Amali Weerasinghe. Up or
down? an insight into programmer’s acquisition of it-
eration skills. In Proceedings of the 50th ACM technical
symposium on computer science education, pages 941—
947, 2019.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Ray-
mond Lister. Relationships between reading, tracing
and writing skills in introductory programming. In
Proceedings of the fourth international workshop on com-
puting education research, pages 101-112, 2008.

Craig S Miller and Amber Settle. Mixing and matching
loop strategies: By value or by index? In Proceedings
of the 52nd ACM Technical Symposium on Computer Sci-
ence Education, pages 1048-1054, 2021.

Thomas L Naps, Guido Rossling, Vicki Almstrum,
Wanda Dann, Rudolf Fleischer, Chris Hundhausen,
Ari Korhonen, Lauri Malmi, Myles McNally, Susan
Rodger, et al. Exploring the role of visualization and
engagement in computer science education. In Work-
ing group reports from ITiCSE on Innovation and technol-
ogy in computer science education, pages 131-152. 2002.

Juan David Ortega-Alvarez, Camilo Vieira, Nicolas
Guarin-Zapata, and Juan Gémez. Flipping a compu-
tational modeling class: Strategies to engage students
and foster active learning. In 2020 IEEE Frontiers in
Education Conference (FIE), pages 1-4. IEEE, 2020.

Jonathan F Osborne and Alexis Patterson. Scientific ar-
gument and explanation: A necessary distinction? Sci-
ence Education, 95(4):627-638, 2011.

Roy D Pea. Language-independent conceptual “bugs” in
novice programming. Journal of educational computing
research, 2(1):25-36, 1986.

David Perkins and Fay Martin. Fragile knowledge and
neglected strategies in novice programmers. ir85-22.
1985.

16

Julia Phillippi and Jana Lauderdale. A guide to field
notes for qualitative research: Context and conversa-
tion. Qualitative health research, 28(3):381-388, 2018.

Sawitree Pipitgool, Paitoon Pimdee, Somkiat Tunti-
wongwanich, and Akan Narabin. Enhancing stu-
dent computational thinking skills by use of a
flipped-classroom learning model and critical think-
ing problem-solving activities: A conceptual frame-
work. Turkish Journal of Computer and Mathematics Ed-
ucation (TURCOMAT), 12(14):1352-1363, 2021.

Yizhou Qian and James Lehman. Students’ misconcep-
tions and other difficulties in introductory program-
ming: A literature review. ACM Transactions on Com-
puting Education (TOCE), 18(1):1-24, 2017.

Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. A
miss is as good as a mile: Off-by-one errors and arrays
in an introductory programming course. In Proceedings
of the Twenty-Second Australasian Computing Education
Conference, pages 31-38, 2020.

Andrew Rudder, Margaret Bernard, Shareeda Mo-
hammed, et al. Teaching programming using visual-
ization. In Proceedings of the Sixth IASTED Interna-
tional Conference on Web-Based Education, pages 487—
492, 2007.

Devin Silvia, Brian O’Shea, and Brian Danielak. A
learner-centered approach to teaching computational
modeling, data analysis, and programming. In Interna-
tional Conference on Computational Science, pages 374—
388. Springer, 2019.

17

	Introduction
	Modifications to CMSE 201
	For Loops and Indexing
	Data Access
	Array Manipulation

	Assessment Technique
	Bi-Semesterly Survey
	In-Class Student Observations
	Class Assignment Observations

	Analysis
	Plotting Techniques
	Statistical Test
	Field Notes and Course Observations
	List and For Loops
	Data Analysis
	Array Usage

	Limitations
	Conclusions
	Mentor Contribution

